Esempio n. 1
0
def SimplifiedQbsolv(max_iter=10,
                     max_time=None,
                     convergence=3,
                     energy_threshold=None,
                     max_subproblem_size=30):
    """Races a Tabu solver and a QPU-based sampler of flip-energy-impact induced
    subproblems.

    For arguments description see: :class:`~hybrid.reference.kerberos.Kerberos`.
    """

    energy_reached = None
    if energy_threshold is not None:
        energy_reached = lambda en: en <= energy_threshold

    workflow = hybrid.Loop(hybrid.Race(
        hybrid.InterruptableTabuSampler(),
        hybrid.EnergyImpactDecomposer(
            size=max_subproblem_size, rolling=True, rolling_history=0.15)
        | hybrid.QPUSubproblemAutoEmbeddingSampler()
        | hybrid.SplatComposer()) | hybrid.ArgMin()
                           | hybrid.TrackMin(output=True),
                           max_iter=max_iter,
                           max_time=max_time,
                           convergence=convergence,
                           terminate=energy_reached)

    return workflow
Esempio n. 2
0
def HybridizedPopulationAnnealing(num_reads=20, num_iter=20, num_sweeps=1000):
    """Workflow generator for population annealing initialized with QPU samples.

    Args:
        num_reads (int):
            Size of the population of samples.

        num_iter (int):
            Number of temperatures over which we iterate fixed-temperature
            sampling / resampling.

        num_sweeps (int):
            Number of sweeps in the fixed temperature sampling step.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).
    """

    # QPU initial sampling: limits the PA workflow to QPU-sized problems
    qpu_init = (hybrid.IdentityDecomposer()
                | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=num_reads)
                | hybrid.IdentityComposer()) | hybrid.AggregatedSamples(False)

    # PA workflow: after initial QPU sampling and initial beta schedule estimation,
    # we do `num_iter` steps (one per beta/temperature) of fixed-temperature
    # sampling / weighted resampling
    workflow = qpu_init | CalculateAnnealingBetaSchedule(
        length=num_iter) | hybrid.Loop(
            ProgressBetaAlongSchedule()
            | hybrid.FixedTemperatureSampler(num_sweeps=num_sweeps)
            | EnergyWeightedResampler(),
            max_iter=num_iter)

    return workflow
Esempio n. 3
0
def PopulationAnnealing(num_reads=20, num_iter=20, num_sweeps=1000):
    """Population annealing workflow generator.

    Args:
        num_reads (int):
            Size of the population of samples.

        num_iter (int):
            Number of temperatures over which we iterate fixed-temperature
            sampling / resampling.

        num_sweeps (int):
            Number of sweeps in the fixed temperature sampling step.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).
    """

    # PA workflow: after initial beta schedule estimation, we do `num_iter` steps
    # (one per beta/temperature) of fixed-temperature sampling / weighted resampling
    workflow = CalculateAnnealingBetaSchedule(length=num_iter) | hybrid.Loop(
        ProgressBetaAlongSchedule()
        | hybrid.FixedTemperatureSampler(num_sweeps=num_sweeps,
                                         num_reads=num_reads)
        | EnergyWeightedResampler(),
        max_iter=num_iter)

    return workflow
Esempio n. 4
0
def ParallelTempering(num_sweeps=10000,
                      num_replicas=10,
                      max_iter=None,
                      max_time=None,
                      convergence=3):
    """Parallel tempering workflow generator.

    Args:
        num_sweeps (int, optional):
            Number of sweeps in the fixed temperature sampling.

        num_replicas (int, optional):
            Number of replicas (parallel states / workflow branches).

        max_iter (int/None, optional):
            Maximum number of iterations of the update/swaps loop.

        max_time (int/None, optional):
            Maximum wall clock runtime (in seconds) allowed in the update/swaps
            loop.

        convergence (int/None, optional):
            Number of times best energy of the coldest replica has to repeat
            before we terminate.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).

    """

    # expand single input state into `num_replicas` replica states
    preprocess = SpawnParallelTemperingReplicas(num_replicas=num_replicas)

    # fixed temperature sampling on all replicas in parallel
    update = hybrid.Map(FixedTemperatureSampler(num_sweeps=num_sweeps))

    # replica exchange step: do the top-down sweep over adjacent pairs
    # (good hot samples sink to bottom)
    swap = SwapReplicasDownsweep()

    # loop termination key function
    def key(states):
        if states is not None:
            return states[-1].samples.first.energy

    # replicas update/swap until Loop termination criteria reached
    loop = hybrid.Loop(update | swap,
                       max_iter=max_iter,
                       max_time=max_time,
                       convergence=convergence,
                       key=key)

    # collapse all replicas (although the bottom one should be the best)
    postprocess = hybrid.MergeSamples(aggregate=True)

    workflow = preprocess | loop | postprocess

    return workflow
Esempio n. 5
0
def hybrid_solver():
    workflow = hybrid.Loop(hybrid.RacingBranches(
        hybrid.InterruptableTabuSampler(),
        hybrid.EnergyImpactDecomposer(
            size=30, rolling=True, rolling_history=0.75)
        | hybrid.QPUSubproblemAutoEmbeddingSampler()
        | hybrid.SplatComposer()) | hybrid.ArgMin(),
                           convergence=1)
    return hybrid.HybridSampler(workflow)
Esempio n. 6
0
    def test_hybrid(self):
        import dimod
        import hybrid

        bqm = dimod.BinaryQuadraticModel({}, {'ab': 1, 'bc': -1, 'ca': 1}, 0, dimod.SPIN)

        workflow = hybrid.Loop(hybrid.Race(
            hybrid.InterruptableTabuSampler(),
            hybrid.EnergyImpactDecomposer(size=2)
            | hybrid.SimulatedAnnealingSubproblemSampler()
            | hybrid.SplatComposer()
        ) | hybrid.ArgMin(), convergence=3)

        result = workflow.run(hybrid.State.from_problem(bqm)).result()

        self.assertEqual(result.samples.first.energy, -3.0)
Esempio n. 7
0
def HybridizedPopulationAnnealing(num_reads=100,
                                  num_iter=100,
                                  num_sweeps=100,
                                  beta_range=None):
    """Workflow generator for population annealing initialized with QPU samples.

    Args:
        num_reads (int):
            Size of the population of samples.

        num_iter (int):
            Number of temperatures over which we iterate fixed-temperature
            sampling / resampling.

        num_sweeps (int):
            Number of sweeps in the fixed temperature sampling step.

        beta_range (tuple[float], optional):
            A 2-tuple defining the beginning and end of the beta
            schedule, where beta is the inverse temperature. Passed to
            :class:`.CalculateAnnealingBetaSchedule` for linear schedule
            generation.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).
    """

    # QPU initial sampling: limits the PA workflow to QPU-sized problems
    qpu_init = (hybrid.IdentityDecomposer()
                | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=num_reads)
                | hybrid.IdentityComposer()) | hybrid.AggregatedSamples(False)

    # PA workflow: after initial QPU sampling and initial beta schedule estimation,
    # we do `num_iter` steps (one per beta/temperature) of fixed-temperature
    # sampling / weighted resampling

    schedule_init = CalculateAnnealingBetaSchedule(length=num_iter,
                                                   beta_range=beta_range,
                                                   interpolation='linear')

    workflow = qpu_init | schedule_init | hybrid.Loop(
        ProgressBetaAlongSchedule()
        | hybrid.FixedTemperatureSampler(num_sweeps=num_sweeps)
        | EnergyWeightedResampler(),
        max_iter=num_iter)

    return workflow
Esempio n. 8
0
def PopulationAnnealing(num_reads=100,
                        num_iter=100,
                        num_sweeps=100,
                        beta_range=None):
    """Population annealing workflow generator.

    Args:
        num_reads (int):
            Size of the population of samples.

        num_iter (int):
            Number of temperatures over which we iterate fixed-temperature
            sampling / resampling.

        num_sweeps (int):
            Number of sweeps in the fixed temperature sampling step.

        beta_range (tuple[float], optional):
            A 2-tuple defining the beginning and end of the beta
            schedule, where beta is the inverse temperature. Passed to
            :class:`.CalculateAnnealingBetaSchedule` for linear schedule
            generation.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).
    """

    # PA workflow: after initial beta schedule estimation, we do `num_iter` steps
    # (one per beta/temperature) of fixed-temperature sampling / weighted resampling

    schedule_init = CalculateAnnealingBetaSchedule(length=num_iter,
                                                   beta_range=beta_range,
                                                   interpolation='linear')

    workflow = schedule_init | hybrid.Loop(
        ProgressBetaAlongSchedule()
        | hybrid.FixedTemperatureSampler(num_sweeps=num_sweeps,
                                         num_reads=num_reads)
        | EnergyWeightedResampler(),
        max_iter=num_iter)

    return workflow
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)

# construct a Dialectic Search workflow
generate_antithesis = (hybrid.IdentityDecomposer()
                       | hybrid.RandomSubproblemSampler()
                       | hybrid.SplatComposer()
                       | hybrid.TabuProblemSampler())

generate_synthesis = (hybrid.GreedyPathMerge() | hybrid.TabuProblemSampler())

tracker = hybrid.TrackMin()

local_update = hybrid.LoopWhileNoImprovement(
    hybrid.Parallel(hybrid.Identity(), generate_antithesis)
    | generate_synthesis | tracker,
    max_tries=10)

global_update = hybrid.Loop(generate_antithesis | local_update, max_iter=10)

# run the workflow
init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
final_state = global_update.run(init_state).result()

# show execution profile
hybrid.profiling.print_counters(global_update)

# show results
print("Solution: sample={.samples.first}".format(tracker.best))
Esempio n. 10
0
#     hybrid.InterruptableTabuSampler(),
#     hybrid.EnergyImpactDecomposer(size=2)
#     | hybrid.QPUSubproblemAutoEmbeddingSampler()
#     | hybrid.SplatComposer()
# ) | hybrid.ArgMin()

#iteration = hybrid.RacingBranches(
iteration = hybrid.Race(
    hybrid.InterruptableTabuSampler(),
    #hybrid.SimulatedAnnealingProblemSampler(),
    subproblem | subsampler) | hybrid.ArgMin()

# iteration = hybrid.Race(
#     hybrid.SimulatedAnnealingProblemSampler(),
#     subproblem | subsampler
# ) | hybrid.ArgMin()

#workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=3)
#workflow = hybrid.Loop(iteration, max_iter=5, convergence=3)
workflow = hybrid.Loop(iteration, max_iter=1)

start_t = perf_counter()
# Solve the problem
init_state = hybrid.State.from_problem(bqm)
final_state = workflow.run(init_state).result()

elapsed_t = perf_counter() - start_t
# Print results
print("Solution: sample={.samples.first}".format(final_state))
print("Elapsed time: {}".format(elapsed_t))
hybrid.profiling.print_counters(workflow)
Esempio n. 11
0
n_replicas = 10
n_random_swaps = n_replicas - 1
n_iterations = 10

# states are randomly initialized
state = hybrid.State.from_problem(bqm)

# get a reasonable beta range
beta_hot, beta_cold = neal.default_beta_range(bqm)

# generate betas for all branches/replicas
betas = np.geomspace(beta_hot, beta_cold, n_replicas)

# create n_replicas with geometric distribution of betas (inverse temperature)
replicas = hybrid.States(*[state.updated(beta=b) for b in betas])

# run replicas update/swap for n_iterations
# (after each update/sampling step, do n_replicas-1 swap operations)
update = hybrid.Map(FixedTemperatureSampler(num_sweeps=n_sweeps))
swap = hybrid.Loop(SwapReplicas(), max_iter=n_random_swaps)
workflow = hybrid.Loop(update | swap, max_iter=n_iterations) \
         | hybrid.MergeSamples(aggregate=True)

solution = workflow.run(replicas).result()

# show execution profile
hybrid.profiling.print_counters(workflow)

# show results
print("Solution: sample={0.samples.first}, energy={0.samples.first.energy}".format(solution))
H = 0

for i in range(len(arr)):
    if (i % 10 == 0):  #high impact variables
        H += 1000 * arr[i] * Spin(f'x_{i}')
        continue
    H += arr[i] * Spin(f'x_{i}')

H *= H
print("Compiling...")
model = H.compile()
bqm = model.to_bqm()
print("OK")

import hybrid
hybrid.logger.setLevel(hybrid.logging.DEBUG)

workflow = hybrid.Loop(hybrid.RacingBranches(
    hybrid.InterruptableSimulatedAnnealingProblemSampler(),
    hybrid.EnergyImpactDecomposer(size=10, rolling=True, rolling_history=.3)
    | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=2)
    | hybrid.SplatComposer()) | hybrid.ArgMin(),
                       convergence=3)

# not our workflow
result = hybrid.KerberosSampler().sample(bqm)
hybrid.Unwind(workflow)
print("Solution: sample={}".format(result.first))
#hybrid.print_structure(workflow)
print("-----------------------")
#hybrid.print_counters(workflow)
Esempio n. 13
0
    def sample(self,
               bqm,
               init_sample=None,
               max_iter=100,
               convergence=3,
               num_reads=1,
               sa_reads=1,
               sa_sweeps=10000,
               tabu_timeout=500,
               qpu_reads=100,
               qpu_sampler=None,
               qpu_params=None,
               max_subproblem_size=50,
               energy_threshold=None):
        """Run Tabu search, Simulated annealing and QPU subproblem sampling (for
        high energy impact problem variables) in parallel and return the best
        samples.

        Args:
            bqm (:obj:`~dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            init_sample (:class:`~dimod.SampleSet`, callable, ``None``):
                Initial sample set (or sample generator) used for each "read".
                Use a random sample for each read by default.

            max_iter (int):
                Number of iterations in the hybrid algorithm.

            convergence (int):
                Number of iterations with no improvement that terminates sampling.

            num_reads (int):
                Number of reads. Each sample is the result of a single run of the
                hybrid algorithm.

            sa_reads (int):
                Number of reads in the simulated annealing branch.

            sa_sweeps (int):
                Number of sweeps in the simulated annealing branch.

            tabu_timeout (int):
                Timeout for non-interruptable operation of tabu search (time in
                milliseconds).

            qpu_reads (int):
                Number of reads in the QPU branch.

            qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()):
                Quantum sampler such as a D-Wave system.

            qpu_params (dict):
                Dictionary of keyword arguments with values that will be used
                on every call of the QPU sampler.

            max_subproblem_size (int):
                Maximum size of the subproblem selected in the QPU branch.

            energy_threshold (float, optional):
                Terminate when this energy threshold is surpassed. Check is
                performed at the end of each iteration.

        Returns:
            :obj:`~dimod.SampleSet`: A `dimod` :obj:`.~dimod.SampleSet` object.

        """

        if callable(init_sample):
            init_state_gen = lambda: hybrid.State.from_sample(
                init_sample(), bqm)
        elif init_sample is None:
            init_state_gen = lambda: hybrid.State.from_sample(
                hybrid.random_sample(bqm), bqm)
        elif isinstance(init_sample, dimod.SampleSet):
            init_state_gen = lambda: hybrid.State.from_sample(init_sample, bqm)
        else:
            raise TypeError(
                "'init_sample' should be a SampleSet or a SampleSet generator")

        subproblem_size = min(len(bqm), max_subproblem_size)

        energy_reached = None
        if energy_threshold is not None:
            energy_reached = lambda en: en <= energy_threshold

        iteration = hybrid.Race(
            hybrid.Identity(),
            hybrid.InterruptableTabuSampler(timeout=tabu_timeout),
            hybrid.InterruptableSimulatedAnnealingProblemSampler(
                num_reads=sa_reads, num_sweeps=sa_sweeps),
            hybrid.EnergyImpactDecomposer(size=subproblem_size,
                                          rolling=True,
                                          rolling_history=0.3,
                                          traversal='bfs')
            | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads,
                                                       qpu_sampler=qpu_sampler,
                                                       qpu_params=qpu_params)
            | hybrid.SplatComposer(),
        ) | hybrid.ArgMin()

        self.runnable = hybrid.Loop(iteration,
                                    max_iter=max_iter,
                                    convergence=convergence,
                                    terminate=energy_reached)

        samples = []
        energies = []
        for _ in range(num_reads):
            init_state = init_state_gen()
            final_state = self.runnable.run(init_state)
            # the best sample from each run is one "read"
            ss = final_state.result().samples
            ss.change_vartype(bqm.vartype, inplace=True)
            samples.append(ss.first.sample)
            energies.append(ss.first.energy)

        return dimod.SampleSet.from_samples(samples,
                                            vartype=bqm.vartype,
                                            energy=energies)
n_random_swaps = n_replicas - 1
n_iterations = 10

# replicas are initialized with random samples
state = hybrid.State.from_problem(bqm)
replicas = hybrid.States(*[state.updated() for _ in range(n_replicas)])

# get a reasonable beta range
beta_hot, beta_cold = neal.default_beta_range(bqm)

# generate betas for all branches/replicas
betas = np.geomspace(beta_hot, beta_cold, n_replicas)

# run replicas update/swap for n_iterations
# (after each update/sampling step, do n_replicas-1 random adjacent pair swaps)
update = hybrid.Branches(*[
    FixedTemperatureSampler(beta=beta, num_sweeps=n_sweeps) for beta in betas
])
swap = hybrid.Loop(SwapReplicaPairRandom(betas=betas), max_iter=n_random_swaps)
workflow = hybrid.Loop(update | swap, max_iter=n_iterations) \
         | hybrid.MergeSamples(aggregate=True)

solution = workflow.run(replicas).result()

# show execution profile
hybrid.profiling.print_counters(workflow)

# show results
print("Solution: sample={0.samples.first}, energy={0.samples.first.energy}".
      format(solution))
Esempio n. 15
0
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys

import dimod
import hybrid

# load a problem
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)

# run Tabu in parallel with QPU, but post-process QPU samples with very short Tabu
iteration = hybrid.Race(
    hybrid.InterruptableTabuSampler(),
    hybrid.EnergyImpactDecomposer(size=50)
    | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=100)
    | hybrid.SplatComposer()
    | hybrid.TabuProblemSampler(timeout=1)) | hybrid.ArgMin()

main = hybrid.Loop(iteration, max_iter=10, convergence=3)

# run the workflow
init_state = hybrid.State.from_sample(hybrid.utils.min_sample(bqm), bqm)
solution = main.run(init_state).result()

# show results
print("Solution: sample={.samples.first}".format(solution))
# https://docs.ocean.dwavesys.com/en/latest/examples/hybrid1.html#hybrid1

import dimod
import networkx as nx
import random
graph = nx.barabasi_albert_graph(100, 3, seed=1)
h = {v: 0.0 for v in graph.nodes}
J = {edge: random.choice([-1, 1]) for edge in graph.edges}
bqm = dimod.BQM(h, J, offset=0, vartype=dimod.SPIN)

import hybrid
hybrid.logger.setLevel(hybrid.logging.DEBUG)

workflow = hybrid.Loop(hybrid.RacingBranches(
    hybrid.InterruptableTabuSampler(max_time=0),
    hybrid.EnergyImpactDecomposer(size=100, rolling=True, rolling_history=0.75)
    | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=1)
    | hybrid.SplatComposer()) | hybrid.ArgMin(),
                       convergence=3)

result = hybrid.HybridSampler(workflow).sample(bqm)
hybrid.Unwind(workflow)
print("Solution: sample={}".format(result.first))
hybrid.print_structure(workflow)
print("-----------------------")
hybrid.print_counters(workflow)
Esempio n. 17
0
def Kerberos(max_iter=100,
             max_time=None,
             convergence=3,
             energy_threshold=None,
             sa_reads=1,
             sa_sweeps=10000,
             tabu_timeout=500,
             qpu_reads=100,
             qpu_sampler=None,
             qpu_params=None,
             max_subproblem_size=50):
    """An opinionated hybrid asynchronous decomposition sampler for problems of
    arbitrary structure and size. Runs Tabu search, Simulated annealing and QPU
    subproblem sampling (for high energy impact problem variables) in parallel
    and returns the best samples.

    Kerberos workflow is used by :class:`KerberosSampler`.

    Termination Criteria Args:

        max_iter (int):
            Number of iterations in the hybrid algorithm.

        max_time (float/None, optional, default=None):
            Wall clock runtime termination criterion. Unlimited by default.

        convergence (int):
            Number of iterations with no improvement that terminates sampling.

        energy_threshold (float, optional):
            Terminate when this energy threshold is surpassed. Check is
            performed at the end of each iteration.

    Simulated Annealing Parameters:

        sa_reads (int):
            Number of reads in the simulated annealing branch.

        sa_sweeps (int):
            Number of sweeps in the simulated annealing branch.

    Tabu Search Parameters:

        tabu_timeout (int):
            Timeout for non-interruptable operation of tabu search (time in
            milliseconds).

    QPU Sampling Parameters:

        qpu_reads (int):
            Number of reads in the QPU branch.

        qpu_sampler (:class:`dimod.Sampler`, optional, default=DWaveSampler()):
            Quantum sampler such as a D-Wave system.

        qpu_params (dict):
            Dictionary of keyword arguments with values that will be used
            on every call of the QPU sampler.

        max_subproblem_size (int):
            Maximum size of the subproblem selected in the QPU branch.

    Returns:
        Workflow (:class:`~hybrid.core.Runnable` instance).

    """

    energy_reached = None
    if energy_threshold is not None:
        energy_reached = lambda en: en <= energy_threshold

    iteration = hybrid.Race(
        hybrid.Identity(),
        hybrid.InterruptableTabuSampler(timeout=tabu_timeout),
        hybrid.InterruptableSimulatedAnnealingProblemSampler(
            num_reads=sa_reads, num_sweeps=sa_sweeps),
        hybrid.EnergyImpactDecomposer(size=max_subproblem_size,
                                      rolling=True,
                                      rolling_history=0.3,
                                      traversal='bfs')
        | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=qpu_reads,
                                                   qpu_sampler=qpu_sampler,
                                                   qpu_params=qpu_params)
        | hybrid.SplatComposer()) | hybrid.ArgMin()

    workflow = hybrid.Loop(iteration,
                           max_iter=max_iter,
                           max_time=max_time,
                           convergence=convergence,
                           terminate=energy_reached)

    return workflow
Esempio n. 18
0
print("BQM: {} nodes, {} edges, {:.2f} density".format(
    len(bqm), len(bqm.quadratic), hybrid.bqm_density(bqm)))

# sweeps per fixed-temperature sampling step
num_sweeps = 1000

# number of generations, or temperatures to progress through
num_iter = 20

# population size
num_samples = 20

# PA workflow: after initial beta schedule estimation, we do `num_iter` steps
# (one per beta/temperature) of fixed-temperature sampling / weighted resampling
workflow = CalculateAnnealingBetaSchedule(length=num_iter) | hybrid.Loop(
    ProgressBetaAlongSchedule()
    | FixedTemperatureSampler(num_sweeps=num_sweeps, num_reads=num_samples)
    | EnergyWeightedResampler(),
    max_iter=num_iter)

# run the workflow
state = hybrid.State.from_problem(bqm)
solution = workflow.run(state).result()

# show execution profile
hybrid.profiling.print_counters(workflow)

# show results
print("Solution: sample={0.samples.first}, energy={0.samples.first.energy}".
      format(solution))
Esempio n. 19
0
        sorted(glob('../problems/ac3/*'))[:problems_per_group],
    ))

workflows = [
    ("10s-tabu", lambda **kw: hybrid.TabuProblemSampler(timeout=10000)),
    ("10k-sa", lambda **kw:
     (hybrid.IdentityDecomposer()
      | hybrid.SimulatedAnnealingSubproblemSampler(sweeps=10000)
      | hybrid.SplatComposer())),
    ("qbsolv-like",
     lambda qpu, energy_threshold, **kw: hybrid.Loop(hybrid.Race(
         hybrid.InterruptableTabuSampler(timeout=200),
         hybrid.EnergyImpactDecomposer(
             size=50, rolling=True, rolling_history=0.15)
         | hybrid.QPUSubproblemAutoEmbeddingSampler(qpu_sampler=qpu)
         | hybrid.SplatComposer()) | hybrid.ArgMin(),
                                                     max_iter=100,
                                                     convergence=10,
                                                     terminate=None
                                                     if energy_threshold is
                                                     None else lambda en: en <=
                                                     energy_threshold)),
    ("tiling-chimera",
     lambda qpu, energy_threshold, **kw: hybrid.Loop(
         hybrid.Race(
             hybrid.InterruptableTabuSampler(timeout=200),
             hybrid.TilingChimeraDecomposer(size=(16, 16, 4))
             | hybrid.QPUSubproblemExternalEmbeddingSampler(qpu_sampler=qpu)
             | hybrid.SplatComposer(),
         ) | hybrid.ArgMin(),
         max_iter=100,
         convergence=10,
# number of generations, or temperatures to progress through
num_iter = 20

# population size
num_samples = 20

# QPU initial sampling: limits the PA workflow to QPU-sized problems
qpu_init = (hybrid.IdentityDecomposer()
            | hybrid.QPUSubproblemAutoEmbeddingSampler(num_reads=num_samples)
            | hybrid.IdentityComposer()) | hybrid.AggregatedSamples(False)

# PA workflow: after initial beta schedule estimation, we do `num_iter` steps
# (one per beta/temperature) of fixed-temperature sampling / weighted resampling
workflow = qpu_init | CalculateAnnealingBetaSchedule(
    length=num_iter) | hybrid.Loop(
        ProgressBetaAlongSchedule() | FixedTemperatureSampler(
            num_sweeps=num_sweeps) | EnergyWeightedResampler(),
        max_iter=num_iter)

# run the workflow
state = hybrid.State.from_problem(bqm)
solution = workflow.run(state).result()

# show execution profile
hybrid.profiling.print_counters(workflow)

# show results
print("Solution: sample={0.samples.first}, energy={0.samples.first.energy}".
      format(solution))
Esempio n. 21
0
n_replicas = 10
n_iterations = 10

# states are randomly initialized
state = hybrid.State.from_problem(bqm)

# get a reasonable beta range
beta_hot, beta_cold = neal.default_beta_range(bqm)

# generate betas for all branches/replicas
betas = np.geomspace(beta_hot, beta_cold, n_replicas)

# create n_replicas with geometric distribution of betas (inverse temperature)
replicas = hybrid.States(*[state.updated(beta=b) for b in betas])

# run replicas update/swap for n_iterations
# (after each update/sampling step, do n_replicas-1 swap operations)
update = hybrid.Map(FixedTemperatureSampler(num_sweeps=n_sweeps))
swap = SwapReplicasDownsweep()
workflow = hybrid.Loop(update | swap, max_iter=n_iterations) \
         | hybrid.MergeSamples(aggregate=True)

solution = workflow.run(replicas).result()

# show execution profile
hybrid.profiling.print_counters(workflow)

# show results
print("Solution: sample={0.samples.first}, energy={0.samples.first.energy}".
      format(solution))
Esempio n. 22
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys

import dimod
import hybrid

# load a problem
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)

# define the workflow
workflow = hybrid.Loop(hybrid.RacingBranches(
    hybrid.Identity(), hybrid.InterruptableTabuSampler(),
    hybrid.EnergyImpactDecomposer(size=50, rolling=True, traversal='bfs')
    | hybrid.QPUSubproblemAutoEmbeddingSampler()
    | hybrid.SplatComposer()) | hybrid.ArgMin(),
                       convergence=3)

# create a dimod sampler that runs the workflow and sample
result = hybrid.HybridSampler(workflow).sample(bqm)

# show results
print("Solution: sample={.first}".format(result))
Esempio n. 23
0
    def solve(self):

        self.n_bins_truth = self._data.x.shape[0]
        self.n_bins_reco = self._data.d.shape[0]

        if not self._data.R.shape[1] == self.n_bins_truth:
            raise Exception(
                "Number of bins at truth level do not match between 1D spectrum (%i) and response matrix (%i)"
                % (self.n_bins_truth, self._data.R.shape[1]))
        if not self._data.R.shape[0] == self.n_bins_reco:
            raise Exception(
                "Number of bins at reco level do not match between 1D spectrum (%i) and response matrix (%i)"
                % (self.n_bins_reco, self._data.R.shape[0]))

        self.convert_to_binary()

        print("INFO: N bins:", self._data.x.shape[0])
        print("INFO: n-bits encoding:", self.rho)

        print("INFO: Signal truth-level x:")
        print(self._data.x)
        print("INFO: pseudo-data b:")
        print(self._data.d)
        print("INFO: Response matrix:")
        print(self._data.R)

        self.Q = self.make_qubo_matrix()
        self._bqm = dimod.BinaryQuadraticModel.from_numpy_matrix(self.Q)

        print("INFO: solving the QUBO model (size=%i)..." % len(self._bqm))

        if self.backend in [Backends.cpu]:
            print("INFO: running on CPU...")
            self._results = dimod.ExactSolver().sample(self._bqm)
            self._status = StatusCode.success

        elif self.backend in [Backends.sim]:
            num_reads = self.solver_parameters['num_reads']
            print("INFO: running on simulated annealer (neal), num_reads=",
                  num_reads)

            sampler = neal.SimulatedAnnealingSampler()
            self._results = sampler.sample(self._bqm,
                                           num_reads=num_reads).aggregate()
            self._status = StatusCode.success

        elif self.backend in [
                Backends.qpu, Backends.qpu_hinoise, Backends.qpu_lonoise,
                Backends.hyb, Backends.qsolv
        ]:
            print("INFO: running on QPU")

            config_file = self.get_config_file()
            self._hardware_sampler = DWaveSampler(config_file=config_file)
            print("INFO: QPU configuration file:", config_file)

            print("INFO: finding optimal minor embedding...")

            n_bits_avg = np.mean(self._encoder.rho)
            thr = 4. / float(self.n_bins_truth)
            n_tries = 5 if n_bits_avg < thr else 10

            J = qubo_quadratic_terms_from_np_array(self.Q)
            embedding = self.find_embedding(J, n_tries)

            print("INFO: creating DWave sampler...")
            sampler = FixedEmbeddingComposite(self._hardware_sampler,
                                              embedding)

            if self.backend in [
                    Backends.qpu, Backends.qpu_hinoise, Backends.qpu_lonoise
            ]:
                print("INFO: Running on QPU")
                params = self.solver_parameters
                self._results = sampler.sample(self._bqm, **params).aggregate()
                self._status = StatusCode.success

            elif self.backend in [Backends.hyb]:
                print("INFO: hybrid execution")
                import hybrid

                num_reads = self.solver_parameters['num_reads']
                # Define the workflow
                # hybrid.EnergyImpactDecomposer(size=len(bqm), rolling_history=0.15)
                iteration = hybrid.RacingBranches(
                    hybrid.InterruptableTabuSampler(),
                    hybrid.EnergyImpactDecomposer(size=len(self._bqm) // 2,
                                                  rolling=True)
                    | hybrid.QPUSubproblemAutoEmbeddingSampler(
                        num_reads=num_reads)
                    | hybrid.SplatComposer()) | hybrid.ArgMin()
                #workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=3)
                workflow = hybrid.Loop(iteration, max_iter=20, convergence=3)

                init_state = hybrid.State.from_problem(self._bqm)
                self._results = workflow.run(init_state).result().samples
                self._status = StatusCode.success

                # show execution profile
                print("INFO: timing:")
                workflow.timers
                hybrid.print_structure(workflow)
                hybrid.profiling.print_counters(workflow)

            elif self.backend in [Backends.qsolv]:
                print("INFO: using QBsolve with FixedEmbeddingComposite")
                self._results = QBSolv().sample_qubo(S,
                                                     solver=sampler,
                                                     solver_limit=5)
                self._status = StatusCode.success

            else:
                raise Exception("ERROR: unknown backend", self.backend)

        print("DEBUG: status =", self._status)
        return self._status