def test_reset(): create_dataset() sr = SequenceReader(h5_file, key_file, max_seq_length=delta * 2, min_seq_length=delta * 2, seq_split_overlap=delta / 2) scp = copy.deepcopy(sr.scp) seq_length = sr.seq_length num_subseqs = sr.num_subseqs sr.reset() assert (scp != sr.scp) assert (not np.all(seq_length == sr.seq_length)) assert (not np.all(num_subseqs == sr.num_subseqs))
def train_tvae(seq_file, train_list, val_list, gmm_file, decoder_file, qy_file, qz_file, init_path, epochs, batch_size, preproc_file, output_path, num_samples_y, num_samples_z, px_form, qy_form, qz_form, min_kl, **kwargs): set_float_cpu(float_keras()) sr_args = SR.filter_args(**kwargs) sr_val_args = SR.filter_val_args(**kwargs) opt_args = KOF.filter_args(**kwargs) cb_args = KCF.filter_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(gmm_file) sr = SR(seq_file, train_list, batch_size=batch_size, preproc=preproc, **sr_args) max_length = sr.max_batch_seq_length gen_val = None if val_list is not None: sr_val = SR(seq_file, val_list, batch_size=batch_size, preproc=preproc, shuffle_seqs=False, seq_split_mode='sequential', seq_split_overlap=0, reset_rng=True, **sr_val_args) max_length = max(max_length, sr_val.max_batch_seq_length) gen_val = data_generator(sr_val, gmm, max_length) gen_train = data_generator(sr, gmm, max_length) t1 = time.time() if init_path is None: decoder = load_model_arch(decoder_file) qy = load_model_arch(qy_file) # if qz_file is None: # vae = TVAEY(qy, decoder, px_cond_form=px_form, # qy_form=qy_form, min_kl=min_kl) # vae.build(num_samples=num_samples_y, # max_seq_length = max_length) # else: qz = load_model_arch(qz_file) vae = TVAEYZ(qy, qz, decoder, px_cond_form=px_form, qy_form=qy_form, qz_form=qz_form, min_kl=min_kl) else: vae = TVAEYZ.load(init_path) vae.build(num_samples_y=num_samples_y, num_samples_z=num_samples_z, max_seq_length=max_length) logging.info(time.time() - t1) cb = KCF.create_callbacks(vae, output_path, **cb_args) opt = KOF.create_optimizer(**opt_args) h = vae.fit_generator(gen_train, x_val=gen_val, steps_per_epoch=sr.num_batches, validation_steps=sr_val.num_batches, optimizer=opt, epochs=epochs, callbacks=cb, max_queue_size=10) # if vae.x_chol is not None: # x_chol = np.array(K.eval(vae.x_chol)) # logging.info(x_chol[:4,:4]) logging.info('Train elapsed time: %.2f' % (time.time() - t1)) vae.save(output_path + '/model') sr_val.reset() y_val, sy_val, z_val, srz_val = vae.encoder_net.predict_generator( gen_val, steps=400) from scipy import linalg as la yy = y_val - np.mean(y_val, axis=0) cy = np.dot(yy.T, yy) / yy.shape[0] l, v = la.eigh(cy) np.savetxt(output_path + '/l1.txt', l) sr_val.reset() y_val2, sy_val2 = vae.qy_net.predict_generator(gen_val, steps=400) yy = y_val2 - np.mean(y_val, axis=0) cy = np.dot(yy.T, yy) / yy.shape[0] l, v = la.eigh(cy) np.savetxt(output_path + '/l2.txt', l) logging.info(y_val - y_val2)