Esempio n. 1
0
def train_plda(iv_file, train_list, val_list, preproc_file,
               epochs, ml_md, md_epochs,
               output_path, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vcr_args = VCR.filter_args(**kwargs)
    vcr_train = VCR(iv_file, train_list, preproc, **vcr_args)
    x, class_ids = vcr_train.read()

    x_val = None
    class_ids_val = None
    if val_list is not None:
        vcr_val = VCR(iv_file, val_list, preproc, **vcr_args)
        x_val, class_ids_val = vcr_val.read()
        
    t1 = time.time()

    plda_args = F.filter_train_args(**kwargs)
    model = F.create_plda(**plda_args)
    elbos = model.fit(x, class_ids, x_val=x_val, class_ids_val=class_ids_val,
                      epochs=epochs, ml_md=ml_md, md_epochs=md_epochs)

    logging.info('Elapsed time: %.2f s.' % (time.time()-t1))
    
    model.save(output_path)

    elbo = np.vstack(elbos)
    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    elbo_path=os.path.splitext(output_path)[0] + '.csv'
    np.savetxt(elbo_path, elbo, delimiter=',')
Esempio n. 2
0
def train_lda(iv_file, train_list, preproc_file, lda_dim, name, save_tlist,
              append_tlist, output_path, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vcr_args = VCR.filter_args(**kwargs)
    vcr = VCR(iv_file, train_list, preproc, **vcr_args)
    x, class_ids = vcr.read()

    t1 = time.time()

    model = LDA(lda_dim=lda_dim, name=name)
    model.fit(x, class_ids)

    logging.info('Elapsed time: %.2f s.' % (time.time() - t1))

    x = model.predict(x)

    s_mat = SbSw()
    s_mat.fit(x, class_ids)
    logging.debug(s_mat.Sb[:4, :4])
    logging.debug(s_mat.Sw[:4, :4])

    if save_tlist:
        if append_tlist and preproc is not None:
            preproc.append(model)
            model = preproc
        else:
            model = TransformList(model)

    model.save(output_path)
Esempio n. 3
0
def train_linear_gbe(iv_file, train_list, preproc_file, output_path, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vcr_args = VCR.filter_args(**kwargs)
    vcr_train = VCR(iv_file, train_list, preproc, **vcr_args)
    x, class_ids = vcr_train.read()

    t1 = time.time()

    model_args = GBE.filter_train_args(**kwargs)
    model = GBE(**model_args)
    model.fit(x, class_ids)
    logging.info('Elapsed time: %.2f s.' % (time.time() - t1))

    model.save(output_path)
Esempio n. 4
0
    model.save(output_path)


if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        fromfile_prefix_chars='@',
        description='Train LDA')

    parser.add_argument('--iv-file', dest='iv_file', required=True)
    parser.add_argument('--train-list', dest='train_list', required=True)
    parser.add_argument('--preproc-file', dest='preproc_file', default=None)

    VCR.add_argparse_args(parser)

    parser.add_argument('--output-path', dest='output_path', required=True)
    parser.add_argument('--lda-dim', dest='lda_dim', type=int, default=None)
    parser.add_argument('--no-save-tlist',
                        dest='save_tlist',
                        default=True,
                        action='store_false')
    parser.add_argument('--no-append-tlist',
                        dest='append_tlist',
                        default=True,
                        action='store_false')
    parser.add_argument('--name', dest='name', default='lda')
    args = parser.parse_args()
    config_logger(args.verbose)
    del args.verbose
Esempio n. 5
0
def plot_vector_tsne(iv_file, v_list, preproc_file, output_path, save_embed,
                     output_dim, perplexity, exag, lr, num_iter, init_method,
                     rng_seed, verbose, pca_dim, max_classes, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vr_args = VCR.filter_args(**kwargs)
    vcr = VCR(iv_file, v_list, preproc, **vr_args)

    x, class_ids = vcr.read()

    t1 = time.time()

    if pca_dim > 0:
        pca = PCA(pca_dim=pca_dim)
        pca.fit(x)
        x = pca.predict(x)

    if not os.path.exists(output_path):
        os.makedirs(ouput_path)

    tsne_obj = lambda n: TSNE(n_components=n,
                              perplexity=perplexity,
                              early_exaggeration=exag,
                              learning_rate=lr,
                              n_iter=num_iter,
                              init=init_method,
                              random_state=rng_seed,
                              verbose=verbose)

    if max_classes > 0:
        index = class_ids < max_classes
        x = x[index]
        class_ids = class_ids[index]

    if output_dim > 3:
        tsne = tsne_obj(output_dim)
        y = tsne.fit_transform(x)

        if save_embed:
            h5_file = '%s/embed_%dd.h5' % (output_path, ouput_dim)
            hw = DWF.create(h5_file)
            hw.write(vcr.u2c.key, y)

    tsne = tsne_obj(2)
    y = tsne.fit_transform(x)
    if save_embed:
        h5_file = '%s/embed_2d.h5' % output_path
        hw = DWF.create(h5_file)
        hw.write(vcr.u2c.key, y)

    fig_file = '%s/tsne_2d.pdf' % (output_path)
    # plt.scatter(y[:,0], y[:,1], c=class_ids, marker='x')

    color_marker = [(c, m) for m in markers for c in colors]
    for c in np.unique(class_ids):
        idx = class_ids == c
        plt.scatter(y[idx, 0],
                    y[idx, 1],
                    c=color_marker[c][0],
                    marker=color_marker[c][1],
                    label=vcr.class_names[c])

    plt.legend()
    plt.grid(True)
    plt.show()
    plt.savefig(fig_file)
    plt.clf()

    # if max_classes > 0:
    #     fig_file = '%s/tsne_2d_n%d.pdf' % (output_path, max_classes)
    #     index = class_ids < max_classes
    #     plt.scatter(y[index,0], y[index,1], c=class_ids[index], marker='x')
    #     plt.grid(True)
    #     plt.show()
    #     plt.savefig(fig_file)
    #     plt.clf()

    tsne = tsne_obj(3)
    y = tsne.fit_transform(x)
    if save_embed:
        h5_file = '%s/embed_3d.h5' % output_path
        hw = DWF.create(h5_file)
        hw.write(vcr.u2c.key, y)

    fig_file = '%s/tsne_3d.pdf' % (output_path)
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    #ax.scatter(y[:,0], y[:,1], y[:,2], c=class_ids, marker='x')
    for c in np.unique(class_ids):
        idx = class_ids == c
        ax.scatter(y[idx, 0],
                   y[idx, 1],
                   y[idx, 2],
                   c=color_marker[c][0],
                   marker=color_marker[c][1],
                   label=vcr.class_names[c])

    plt.grid(True)
    plt.show()
    plt.savefig(fig_file)
    plt.clf()

    # if max_classes > 0:
    #     fig_file = '%s/tsne_3d_n%d.pdf' % (output_path, max_classes)
    #     index = class_ids < max_classes
    #     ax = fig.add_subplot(111, projection='3d')
    #     ax.scatter(y[index,0], y[index,1], y[index,2], c=class_ids[index], marker='x')
    #     plt.grid(True)
    #     plt.show()
    #     plt.savefig(fig_file)
    #     plt.clf()

    logging.info('Elapsed time: %.2f s.' % (time.time() - t1))
Esempio n. 6
0
def train_be(iv_file, train_list, adapt_iv_file, adapt_list, lda_dim,
             plda_type, y_dim, z_dim, epochs, ml_md, md_epochs, w_mu, w_B, w_W,
             output_path, **kwargs):

    # Read data
    logging.info('loading data')
    vcr_args = VCR.filter_args(**kwargs)
    vcr_train = VCR(iv_file, train_list, None, **vcr_args)
    x, class_ids = vcr_train.read()

    # Train LDA
    logging.info('train LDA')
    t1 = time.time()
    lda = LDA(lda_dim=lda_dim, name='lda')
    lda.fit(x, class_ids)

    x_lda = lda.predict(x)
    logging.info('LDA elapsed time: %.2f s.' % (time.time() - t1))

    # Train centering and whitening
    logging.info('train length norm')
    t1 = time.time()
    lnorm = LNorm(name='lnorm')
    lnorm.fit(x_lda)

    x_ln = lnorm.predict(x_lda)
    logging.info('length norm elapsed time: %.2f s.' % (time.time() - t1))

    # Train PLDA
    logging.info('train PLDA')
    t1 = time.time()
    plda = F.create_plda(plda_type, y_dim=y_dim, z_dim=z_dim, name='plda')
    elbo = plda.fit(x_ln,
                    class_ids,
                    epochs=epochs,
                    ml_md=ml_md,
                    md_epochs=md_epochs)
    logging.info('PLDA elapsed time: %.2f s.' % (time.time() - t1))

    # Save models
    logging.info('saving models')
    preproc = TransformList(lda)
    preproc.append(lnorm)

    if not os.path.exists(output_path):
        os.makedirs(ouput_path)

    preproc.save(output_path + '/lda_lnorm.h5')
    plda.save(output_path + '/plda.h5')

    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    np.savetxt(output_path + '/elbo.csv', elbo, delimiter=',')

    #adaptation
    vcr = VCR(adapt_iv_file, adapt_list, None)
    x, class_ids = vcr.read()
    x_lda = lda.predict(x)
    lnorm.update_T = False
    lnorm.fit(x_lda)

    preproc = TransformList(lda)
    preproc.append(lnorm)

    preproc.save(output_path + '/lda_lnorm_adapt.h5')

    x_ln = lnorm.predict(x_lda)

    plda_adapt = plda.copy()

    elbo = plda.fit(x_ln, class_ids, epochs=epochs)
    plda_adapt.weighted_avg_model(plda, w_mu, w_B, w_W)
    plda_adapt.save(output_path + '/plda_adapt.h5')

    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    np.savetxt(output_path + '/elbo_adapt.csv', elbo, delimiter=',')
Esempio n. 7
0
def train_pdda(iv_file, train_list, val_list,
               decoder_file, qy_file, qz_file,
               epochs, batch_size,
               preproc_file, output_path,
               num_samples_y, num_samples_z,
               px_form, qy_form, qz_form,
               min_kl, **kwargs):

    set_float_cpu('float32')
    
    vcr_args = VCR.filter_args(**kwargs)
    opt_args = KOF.filter_args(**kwargs)
    cb_args = KCF.filter_args(**kwargs)

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

        
    vcr_train = VCR(iv_file, train_list, preproc, **vcr_args)
    max_length = vcr_train.max_samples_per_class
    
    x_val = None
    sw_val = None
    if val_list is not None:
        vcr_val = VCR(iv_file, val_list, preproc, **vcr_args)
        max_length = max(max_length, vcr_val.max_samples_per_class)
        x_val, sw_val = vcr_val.read(return_3d=True, max_length=max_length)
        
    x, sw = vcr_train.read(return_3d=True, max_length=max_length)
        
    t1 = time.time()
    decoder = load_model_arch(decoder_file)
    qy = load_model_arch(qy_file)

    if qz_file is None:
        vae = TVAEY(qy, decoder, px_cond_form=px_form,
                    qy_form=qy_form, min_kl=min_kl)
        vae.build(num_samples=num_samples_y, 
                  max_seq_length = x.shape[1])
    else:
        qz = load_model_arch(qz_file)
        vae = TVAEYZ(qy, qz, decoder, px_cond_form=px_form,
                   qy_form=qy_form, qz_form=qz_form, min_kl=min_kl)
        vae.build(num_samples_y=num_samples_y, num_samples_z=num_samples_z,
                  max_seq_length = x.shape[1])
    logging.info(time.time()-t1)
    # opt = create_optimizer(**opt_args)
    # cb = create_basic_callbacks(vae, output_path, **cb_args)
    # h = vae.fit(x, x_val=x_val,
    #             sample_weight_train=sw, sample_weight_val=sw_val,
    #             optimizer=opt, shuffle=True, epochs=100,
    #             batch_size=batch_size, callbacks=cb)

    # opt = create_optimizer(**opt_args)
    # cb = create_basic_callbacks(vae, output_path, **cb_args)
    # h = vae.fit_mdy(x, x_val=x_val,
    #                 sample_weight_train=sw, sample_weight_val=sw_val,
    #                 optimizer=opt, shuffle=True, epochs=200,
    #                 batch_size=batch_size, callbacks=cb)
    
    # y_mean, y_logvar, z_mean, z_logvar = vae.compute_qyz_x(
    #     x, batch_size=batch_size)
    # sw = np.expand_dims(sw, axis=-1)
    # m_y = np.mean(np.mean(y_mean, axis=0))
    # s2_y = np.sum(np.sum(np.exp(y_logvar)+y_mean**2, axis=0)/
    #               y_logvar.shape[0]-m_y**2)
    # m_z = np.mean(np.sum(np.sum(z_mean*sw, axis=1), axis=0)
    #               /np.sum(sw))
    # s2_z = np.sum(np.sum(np.sum((np.exp(z_logvar)+z_mean**2)*sw, axis=1), axis=0)
    #               /np.sum(sw)-m_z**2)
    # logging.info('m_y: %.2f, trace_y: %.2f, m_z: %.2f, trace_z: %.2f' %
    #       (m_y, s2_y, m_z, s2_z))

    
    cb = KCF.create_callbacks(vae, output_path, **cb_args)
    opt = KOF.create_optimizer(**opt_args)

    h = vae.fit(x, x_val=x_val,
                sample_weight_train=sw, sample_weight_val=sw_val,
                optimizer=opt, shuffle=True, epochs=epochs,
                batch_size=batch_size, callbacks=cb)

    if vae.x_chol is not None:
        x_chol = np.array(K.eval(vae.x_chol))
        logging.info(x_chol[:4,:4])
        
    
    logging.info('Train elapsed time: %.2f' % (time.time() - t1))
    
    vae.save(output_path + '/model')

    t1 = time.time()
    elbo = np.mean(vae.elbo(x, num_samples=1, batch_size=batch_size))
    logging.info('elbo: %.2f' % elbo)

    logging.info('Elbo elapsed  time: %.2f' % (time.time() - t1))

    t1 = time.time()
    vae.build(num_samples_y=1, num_samples_z=1, max_seq_length = x.shape[1])
    vae.compile()


    qyz = vae.compute_qyz_x(x, batch_size=batch_size)
    if vae.qy_form == 'diag_normal':
        y_mean, y_logvar = qyz[:2]
        qz = qyz[2:]
    else:
        y_mean, y_logvar, y_chol = qyz[:3]
        qz = qyz[3:]
    if vae.qz_form == 'diag_normal':
        z_mean, z_logvar = qz[:2]
    else:
        z_mean, z_logvar, z_chol = qz[:3]

    sw = np.expand_dims(sw, axis=-1)
    m_y = np.mean(np.mean(y_mean, axis=0))
    s2_y = np.sum(np.sum(np.exp(y_logvar)+y_mean**2, axis=0)/
                  y_logvar.shape[0]-m_y**2)
    m_z = np.mean(np.sum(np.sum(z_mean*sw, axis=1), axis=0)
                  /np.sum(sw))
    s2_z = np.sum(np.sum(np.sum((np.exp(z_logvar)+z_mean**2)*sw, axis=1), axis=0)
                  /np.sum(sw)-m_z**2)
    logging.info('m_y: %.2f, trace_y: %.2f, m_z: %.2f, trace_z: %.2f' %
          (m_y, s2_y, m_z, s2_z))

    logging.info('Trace elapsed time: %.2f' % (time.time() - t1))

    t1 = time.time()
    vae.build(num_samples_y=1, num_samples_z=1, max_seq_length = 2)
    vae.compile()
    
    x1 = x[:,0,:]
    x2 = x[:,1,:]
    # scores = vae.eval_llr_1vs1_elbo(x1, x2, num_samples=10)
    # tar = scores[np.eye(scores.shape[0], dtype=bool)]
    # non = scores[np.logical_not(np.eye(scores.shape[0], dtype=bool))]
    # logging.info('m_tar: %.2f s_tar: %.2f' % (np.mean(tar), np.std(tar)))
    # logging.info('m_non: %.2f s_non: %.2f' % (np.mean(non), np.std(non)))

    # scores = vae.eval_llr_1vs1_cand(x1, x2)
    # tar = scores[np.eye(scores.shape[0], dtype=bool)]
    # non = scores[np.logical_not(np.eye(scores.shape[0], dtype=bool))]
    # logging.info('m_tar: %.2f s_tar: %.2f' % (np.mean(tar), np.std(tar)))
    # logging.info('m_non: %.2f s_non: %.2f' % (np.mean(non), np.std(non)))

    scores = vae.eval_llr_1vs1_qscr(x1, x2)
    tar = scores[np.eye(scores.shape[0], dtype=bool)]
    non = scores[np.logical_not(np.eye(scores.shape[0], dtype=bool))]
    logging.info('m_tar: %.2f s_tar: %.2f' % (np.mean(tar), np.std(tar)))
    logging.info('m_non: %.2f s_non: %.2f' % (np.mean(non), np.std(non)))
    
    logging.info('Eval elapsed time: %.2f' % (time.time() - t1))