def get_space(): space = HyperSpace() with space.as_default(): id1 = Identity(p1=Choice(['a', 'b']), p2=Int(1, 100), p3=Real(0, 1.0)) return space
def nn(self): solver = Choice(['lbfgs', 'sgd', 'adam']) return dict( cls=MLPClassifier, max_iter=Int(500, 5000, step=500), activation=Choice(['identity', 'logistic', 'tanh', 'relu']), solver=solver, learning_rate=Choice(['constant', 'invscaling', 'adaptive']), learning_rate_init_stub=Cascade(partial(self._cascade, self._nn_learning_rate_init, 'slvr'), slvr=solver), random_state=randint(), )
def get_space(): space = HyperSpace() with space.as_default(): p1 = Int(1, 100) p2 = Choice(['a', 'b', 'c']) p3 = Bool() p4 = Real(0.0, 1.0) id1 = Identity(p1=p1) id2 = Identity(p2=p2)(id1) id3 = Identity(p3=p3)(id2) id4 = Identity(p4=p4)(id3) return space
def get_space(): space = HyperSpace() with space.as_default(): id1 = Identity(p1=Int(0, 10), p2=Choice(['a', 'b'])) id2 = Identity(p3=Real(0., 1.), p4=Bool())(id1) return space
def func_early_stopping(p1=Choice(['a', 'b'], random_state=np.random.RandomState(9527)), p2=Int(1, 10, 2, random_state=np.random.RandomState(9527)), p3=Real(1.0, 5.0, random_state=np.random.RandomState(9527)), p4=9): print(f'p1:{p1},p2:{p2},p3{p3},p4:{p4}') return 0.6