def main():
    parser = argparse.ArgumentParser(
        description='Ensembling HyperSpace models')
    parser.add_argument('--results_dir',
                        type=str,
                        help='Path to results directory.')
    args = parser.parse_args()

    results = load_results(args.results_dir)

    clfs = []
    for _ in results:
        # Use default random forest for each of the ensemble models
        model = RandomForestClassifier()
        clfs.append(model)

    # Using the training and test sets from `optimize.py`
    X_train, _, X_test, y_train, _, y_test = load_data(0.25, 0.25)
    y_preds, y_proba = ensemble(clfs, X_train, y_train, X_test, y_test)

    acc_test = accuracy_score(y_test, y_preds)
    ll_test = log_loss(y_test, y_proba)

    print(
        f'\nEnsemble Test Accuracy: {acc_test:.4f}, Test Log Loss: {ll_test:.4f}'
    )
Esempio n. 2
0
def run(results_dir, n_calls=200, n_runs=10):
    """Run benchmark for Branin function."""
    models = ['GP', 'RF', 'GBRT', 'Rand']
    bounds = [(-5.0, 10.0), (0.0, 15.0)]

    for model in models:
        model_dir = os.path.join(results_dir, model)
        if not os.path.exists(model_dir):
            os.makedirs(model_dir, exist_ok=True)

        for random_state in range(n_runs):
            directory = os.path.join(model_dir, 'run' + str(random_state))

            if not os.path.exists(directory):
                os.makedirs(directory, exist_ok=True)

            checkpoint = load_results(directory)

            hyperdrive(branin,
                       bounds,
                       directory,
                       n_iterations=n_calls,
                       verbose=True,
                       random_state=random_state,
                       checkpoints=True,
                       restart=checkpoint)
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser(
        description='Ensembling HyperSpace models')
    parser.add_argument('--results_dir',
                        type=str,
                        help='Path to results directory.')
    args = parser.parse_args()

    results = load_results(args.results_dir)

    clfs = []
    for result in results:
        # Get domain from best model in each hyperspace
        hyperparams = result.x
        n_estimators = hyperparams[0]
        max_depth = hyperparams[1]
        model = RandomForestClassifier(n_estimators=n_estimators,
                                       max_depth=max_depth)
        clfs.append(model)

    # Using the training and test sets from `optimize.py`
    X_train, _, X_test, y_train, _, y_test = load_data(0.25, 0.25)
    y_preds, y_proba = ensemble(clfs, X_train, y_train, X_test, y_test)

    acc_test = accuracy_score(y_test, y_preds)
    ll_test = log_loss(y_test, y_proba)

    print(
        f'\nEnsemble Test Accuracy: {acc_test:.4f}, Test Log Loss: {ll_test:.4f}'
    )
Esempio n. 4
0
def main():
    parser = argparse.ArgumentParser(description='Setup experiment.')
    parser.add_argument('--results_dir', type=str, help='Path to results directory.')
    args = parser.parse_args()

    hparams = [(2, 10),             # max_depth
               (10.0**-2, 10.0**0)] # learning_rate

    # Load results from previous runs 
    checkpoint = load_results(args.results_dir)

    hyperdrive(objective=objective,
               hyperparameters=hparams,
               results_path=args.results_dir,
               model="GP",
               n_iterations=100,
               verbose=True,
               random_state=0,
               checkpoints=True,
               restart=checkpoint)
Esempio n. 5
0
def main():
    global train_x
    global train_y
    global test_x
    global test_y
    train_x = np.load('data/train_X.npy')
    train_y = np.load('data/train_Y.npy')
    test_x = np.load('data/test_X.npy')
    test_y = np.load('data/test_Y.npy')

    for task in range(4):
        le = preprocessing.LabelEncoder()
        le.fit(train_y[:, task])
        train_y[:, task] = le.transform(train_y[:, task])
        test_y[:, task] = le.transform(test_y[:, task])

    max_vocab = np.max(train_x)
    max_vocab2 = np.max(test_x)
    if max_vocab2 > max_vocab:
        max_vocab = max_vocab2

    print('max_vocab:', max_vocab)

    np.random.seed(0)

    global wv_len
    wv_len = 50
    global wv_mat
    wv_mat = np.random.randn(max_vocab + 1, wv_len).astype('float32') * 0.1
    #num_classes = np.max( train_y ) + 1

    global num_classes
    num_classes = []
    num_classes.append(np.max(train_y[:, 0]) + 1)
    num_classes.append(np.max(train_y[:, 1]) + 1)
    num_classes.append(np.max(train_y[:, 2]) + 1)
    num_classes.append(np.max(train_y[:, 3]) + 1)

    global validation_data
    validation_data = ({
        'Input': test_x
    }, {
        'Dense0': test_y[:, 0],
        'Dense1': test_y[:, 1],
        'Dense2': test_y[:, 2],
        'Dense3': test_y[:, 3]
    })

    space = [(1, 10), (1, 10), (1, 10), (5, 500), (0.00001, 0.1)]

    savepoint = load_results(args.results_dir)

    hyperdrive(objective=objective,
               hyperparameters=space,
               results_path=args.results_dir,
               model="GP",
               n_iterations=25,
               checkpoints=True,
               verbose=True,
               random_state=0,
               restart=savepoint)