Esempio n. 1
0
    def test_crop_float_unit_convertion_signal2D(self):
        # Should convert the unit to nm
        d = np.arange(512 * 512).reshape(512, 512)
        s = signals.Signal2D(d)
        s.axes_manager[0].name = 'x'
        s.axes_manager[0].scale = 0.01
        s.axes_manager[0].units = 'µm'
        s.axes_manager[1].name = 'y'
        s.axes_manager[1].scale = 0.01
        s.axes_manager[1].units = 'µm'
        s.crop(0, 0.0, 0.5, convert_units=True)  # also convert the other axis
        s.crop(1, 0.0, 500.0, convert_units=True)
        nt.assert_almost_equal(s.axes_manager[0].scale, 10.0)
        nt.assert_almost_equal(s.axes_manager[1].scale, 10.0)
        assert s.axes_manager[0].units == 'nm'
        assert s.axes_manager[1].units == 'nm'
        nt.assert_allclose(s.data, d[:50, :50])

        # Should keep the unit to µm
        d = np.arange(512 * 512).reshape(512, 512)
        s = signals.Signal2D(d)
        s.axes_manager[0].name = 'x'
        s.axes_manager[0].scale = 0.01
        s.axes_manager[0].units = 'µm'
        s.axes_manager[1].name = 'y'
        s.axes_manager[1].scale = 0.01
        s.axes_manager[1].units = 'µm'
        s.crop(0, 0.0, 5.0, convert_units=True)
        s.crop(1, 0.0, 5.0, convert_units=True)
        nt.assert_almost_equal(s.axes_manager[0].scale, 0.01)
        nt.assert_almost_equal(s.axes_manager[1].scale, 0.01)
        assert s.axes_manager[0].units == "um"
        assert s.axes_manager[1].units == "um"
        nt.assert_allclose(s.data, d[:500, :500])
    def setup_method(self, method):
        self.s1 = signals.Signal2D(np.ones((2, 3, 4, 5)))
        self.s2 = signals.Signal2D(np.ones((2, 3, 4, 5)))

        self.s1.axes_manager[1].scale = 1.0
        self.s1.axes_manager[1].offset = 0.0
        self.s1.axes_manager[1].units = ""

        self.s2.axes_manager[1].scale = 2.0
        self.s2.axes_manager[1].offset = 0.00001
        self.s2.axes_manager[1].units = "mm"
Esempio n. 3
0
def get_atomic_resolution_tem_signal2d():
    """Get an artificial atomic resolution TEM Signal2D.

    Returns
    -------
    :py:class:`~hyperspy._signals.signal2d.Signal2D`

    Example
    -------
    >>> s = hs.datasets.artificial_data.get_atomic_resolution_tem_signal2d()
    >>> s.plot()

    """
    sX, sY = 2, 2
    x_array, y_array = np.mgrid[0:200, 0:200]
    image = np.zeros_like(x_array, dtype=np.float32)
    gaussian2d = components2d.Gaussian2D(sigma_x=sX, sigma_y=sY)
    for x in range(10, 195, 20):
        for y in range(10, 195, 20):
            gaussian2d.centre_x.value = x
            gaussian2d.centre_y.value = y
            image += gaussian2d.function(x_array, y_array)

    s = signals.Signal2D(image)
    return s
Esempio n. 4
0
 def setup_method(self, method):
     rng = np.random.RandomState(100)
     sources = signals.Signal1D(rng.standard_t(0.5, size=(3, 100)))
     maps = signals.Signal2D(rng.standard_t(0.5, size=(3, 4, 5)))
     self.s = (sources.inav[0] * maps.inav[0].T +
               sources.inav[1] * maps.inav[1].T +
               sources.inav[2] * maps.inav[2].T)
Esempio n. 5
0
 def setup_method(self, method):
     np.random.seed(100)
     sources = signals.Signal1D(np.random.standard_t(.5, size=(3, 100)))
     np.random.seed(100)
     maps = signals.Signal2D(np.random.standard_t(.5, size=(3, 4, 5)))
     self.s = (sources.inav[0] * maps.inav[0].T
               + sources.inav[1] * maps.inav[1].T
               + sources.inav[2] * maps.inav[2].T)
Esempio n. 6
0
def test_lazy_transpose_rechunks():
    ar = da.ones((50, 50, 256, 256), chunks=(5, 5, 256, 256))
    s = signals.Signal2D(ar).as_lazy()
    s1 = s.T  # By default it does not rechunk
    cks = s.data.chunks
    assert s1.data.chunks == (cks[2], cks[3], cks[0], cks[1])
    s2 = s.transpose(optimize=True)
    assert s2.data.chunks != s1.data.chunks
Esempio n. 7
0
 def setup_method(self):
     self.signal = signals.Signal2D(np.random.rand(11, 5, 7))
     self.signal.decomposition()
     self.signal.blind_source_separation(number_of_components=3)
     self.navigation_mask = np.zeros((11,), dtype=bool)
     self.navigation_mask[4:6] = True
     self.signal_mask = np.zeros((5, 7), dtype=bool)
     self.signal_mask[1:4, 2:6] = True
Esempio n. 8
0
def test_scalebar_remove():
    im = signals.Signal2D(-np.arange(10000).reshape([100, 100]))
    for ax in im.axes_manager.signal_axes:
        ax.scale = 1.2
        ax.units = 'nm'
    im.plot()
    assert im._plot.signal_plot.ax.scalebar is not None
    im._plot.signal_plot.ax.scalebar.remove()
Esempio n. 9
0
def test_lazy_transpose_rechunks():
    ar = da.ones((50, 50, 256, 256), chunks=(5, 5, 256, 256))
    s = signals.Signal2D(ar).as_lazy()
    s1 = s.T
    chunks = s1.data.chunks
    assert len(chunks[0]) != 1
    assert len(chunks[1]) != 1
    assert len(chunks[2]) == 1
    assert len(chunks[3]) == 1
Esempio n. 10
0
def test_lazy_changetype_rechunk_False():
    ar = da.ones((50, 50, 256, 256), chunks=(5, 5, 256, 256), dtype='uint8')
    s = signals.Signal2D(ar).as_lazy()
    s._make_lazy(rechunk=True)
    assert s.data.dtype is np.dtype('uint8')
    chunks_old = s.data.chunks
    s.change_dtype('float', rechunk=False)
    assert s.data.dtype is np.dtype('float')
    assert chunks_old == s.data.chunks
Esempio n. 11
0
def test_plot_contrast_editor(gamma, saturated_pixels):
    np.random.seed(1)
    data = np.random.random(size=(10, 10, 100, 100)) * 1000
    data += np.arange(10 * 10 * 100 * 100).reshape((10, 10, 100, 100))
    s = signals.Signal2D(data)
    s.plot(gamma=gamma, saturated_pixels=saturated_pixels)
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    assert ceditor.gamma == gamma
    assert ceditor.saturated_pixels == saturated_pixels
    return plt.gcf()
Esempio n. 12
0
def test_plot_contrast_editor(gamma, percentile):
    np.random.seed(1)
    data = np.random.random(size=(10, 10, 100, 100)) * 1000
    data += np.arange(10 * 10 * 100 * 100).reshape((10, 10, 100, 100))
    s = signals.Signal2D(data)
    s.plot(gamma=gamma, vmin=percentile[0], vmax=percentile[1])
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    assert ceditor.gamma == gamma
    assert ceditor.vmin_percentile == float(percentile[0].split("th")[0])
    assert ceditor.vmax_percentile == float(percentile[1].split("th")[0])
    return plt.gcf()
Esempio n. 13
0
    def setup_method(self, method):
        np.random.seed(1)
        # Use prime numbers to avoid fluke equivalences
        # create 3 random clusters
        n_samples = [250, 100, 50]
        std = [1.0, 2.0, 0.5]
        X = []
        centers = np.array([[-15.0, -15.0, -15.0], [1.0, 1.0, 1.0],
                            [15.0, 15.0, 15.0]])
        for i, (n, std) in enumerate(zip(n_samples, std)):
            X.append(centers[i] + np.random.normal(scale=std, size=(n, 3)))

        data = np.concatenate(X)

        # nav1, sig1
        s = signals.Signal1D(data.reshape(400, 3))
        # nav2, sig1
        s2 = signals.Signal1D(data.reshape(40, 10, 3))

        # Run decomposition and cluster analysis
        s.decomposition()
        s.cluster_analysis("decomposition",
                           n_clusters=3,
                           algorithm='kmeans',
                           preprocessing="minmax",
                           random_state=0)
        s.estimate_number_of_clusters("decomposition", metric="elbow")

        s2.decomposition()
        s2.cluster_analysis("decomposition",
                            n_clusters=3,
                            algorithm='kmeans',
                            preprocessing="minmax",
                            random_state=0)

        data = np.zeros((2000, 5))
        data[:250 * 5:5, :] = 10
        data[2 + 250 * 5:350 * 5:5, :] = 2
        data[350 * 5:400 * 5, 4] = 20

        # nav2, sig2
        s3 = signals.Signal2D(data.reshape(20, 20, 5, 5))
        s3.decomposition()
        s3.cluster_analysis("decomposition",
                            n_clusters=3,
                            algorithm='kmeans',
                            preprocessing="minmax",
                            random_state=0)

        self.s = s
        self.s2 = s2
        self.s3 = s3
Esempio n. 14
0
def test_plot_contrast_editor_norm(norm):
    np.random.seed(1)
    data = np.random.random(size=(100, 100)) * 1000
    data += np.arange(100 * 100).reshape((100, 100))
    s = signals.Signal2D(data)
    s.plot(norm=norm)
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    if norm == "log":
        # test log with negative numbers
        s2 = s - 5E3
        s2.plot(norm=norm)
        _ = ImageContrastEditor(s._plot.signal_plot)
    assert ceditor.norm == norm.capitalize()
Esempio n. 15
0
def test_lazy_changetype_rechunk():
    ar = da.ones((50, 50, 256, 256), chunks=(5, 5, 256, 256), dtype='uint8')
    s = signals.Signal2D(ar).as_lazy()
    s._make_lazy(rechunk=True)
    assert s.data.dtype is np.dtype('uint8')
    chunks_old = s.data.chunks
    s.change_dtype('float')
    assert s.data.dtype is np.dtype('float')
    chunks_new = s.data.chunks
    assert (len(chunks_old[0]) * len(chunks_old[1]) <
            len(chunks_new[0]) * len(chunks_new[1]))
    s.change_dtype('uint8')
    assert s.data.dtype is np.dtype('uint8')
    chunks_newest = s.data.chunks
    assert chunks_newest == chunks_new
Esempio n. 16
0
def test_plot_constrast_editor_apply():
    np.random.seed(1)
    data = np.random.random(size=(100, 100)) * 1000
    data += np.arange(100 * 100).reshape((100, 100))
    s = signals.Signal2D(data)
    s.plot()
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    ceditor.span_selector.extents = (3E3, 5E3)
    ceditor._update_image_contrast()
    image_vmin_vmax = ceditor.image._vmin, ceditor.image._vmax
    ceditor.apply()
    assert not ceditor.span_selector.visible
    assert not ceditor._is_selector_visible
    np.testing.assert_allclose(
        (ceditor.image._vmin, ceditor.image._vmax),
        image_vmin_vmax,
    )
Esempio n. 17
0
def test_plot_constrast_editor_reset():
    np.random.seed(1)
    data = np.random.random(size=(100, 100)) * 1000
    data += np.arange(100 * 100).reshape((100, 100))
    s = signals.Signal2D(data)
    s.plot()
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    ceditor.span_selector.extents = (3E3, 5E3)
    ceditor._update_image_contrast()
    vmin, vmax = 2.1143748173448866, 10988.568946171192
    np.testing.assert_allclose(ceditor._vmin, vmin)
    np.testing.assert_allclose(ceditor._vmax, vmax)
    np.testing.assert_allclose(ceditor._get_current_range(), (3E3, 5E3))

    ceditor.reset()
    assert not ceditor.span_selector.visible
    assert not ceditor._is_selector_visible
    np.testing.assert_allclose(ceditor._get_current_range(), (vmin, vmax))
    np.testing.assert_allclose(ceditor.image._vmin, vmin)
    np.testing.assert_allclose(ceditor.image._vmax, vmax)
Esempio n. 18
0
def test_plot_constrast_editor_auto_indices_changed():
    np.random.seed(1)
    data = np.random.random(size=(10, 10, 100, 100)) * 1000
    data += np.arange(10 * 10 * 100 * 100).reshape((10, 10, 100, 100))
    s = signals.Signal2D(data)
    s.plot()
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    ceditor.span_selector.extents = (3E3, 5E3)
    ceditor.update_span_selector_traits()
    s.axes_manager.indices = (0, 1)
    # auto is None by default, the span selector need to be removed:
    assert not ceditor.span_selector.visible
    assert not ceditor._is_selector_visible
    ref_value = (100045.29840954322, 110988.10581608873)
    np.testing.assert_allclose(ceditor._get_current_range(), ref_value)

    # Change auto to False
    ceditor.auto = False
    s.axes_manager.indices = (0, 2)
    # vmin, vmax shouldn't have changed
    np.testing.assert_allclose(ceditor._get_current_range(), ref_value)
Esempio n. 19
0
def test_plot_constrast_editor_setting_changed():
    # Test that changing setting works
    np.random.seed(1)
    data = np.random.random(size=(100, 100)) * 1000
    data += np.arange(100 * 100).reshape((100, 100))
    s = signals.Signal2D(data)
    s.plot()
    ceditor = ImageContrastEditor(s._plot.signal_plot)
    ceditor.span_selector.extents = (3E3, 5E3)
    ceditor.update_span_selector_traits()
    np.testing.assert_allclose(ceditor.ss_left_value, 3E3)
    np.testing.assert_allclose(ceditor.ss_right_value, 5E3)
    assert ceditor.auto
    # Do a cycle to trigger traits changed
    ceditor.auto = False
    assert not ceditor.auto
    ceditor.auto = True  # reset and clear span selector
    assert ceditor.auto
    assert not ceditor.span_selector.visible
    assert not ceditor._is_selector_visible
    assert not ceditor.line.line.get_visible()
    ceditor.span_selector.extents = (3E3, 5E3)
    ceditor.span_selector.set_visible(True)
    ceditor.update_line()
    assert ceditor._is_selector_visible
    assert ceditor.line.line.get_visible()

    assert ceditor.bins == 24
    assert ceditor.line.axis.shape == (ceditor.bins, )
    ceditor.bins = 50
    assert ceditor.bins == 50
    assert ceditor.line.axis.shape == (ceditor.bins, )

    # test other parameters
    ceditor.linthresh = 0.1
    assert ceditor.image.linthresh == 0.1

    ceditor.linscale = 0.5
    assert ceditor.image.linscale == 0.5
Esempio n. 20
0
    def compareSaveLoad(self,
                        testShape,
                        dtype='int8',
                        compressor=None,
                        clevel=1,
                        lazy=False,
                        do_async=False,
                        **kwargs):
        # This is the main function which reads and writes from disk.
        mrcName = os.path.join(tmpDir,
                               "testMage_{}_lazy_{}.mrcz".format(dtype, lazy))

        dtype = np.dtype(dtype)
        if dtype == 'float32' or dtype == 'float64':
            testData = np.random.normal(size=testShape).astype(dtype)
        elif dtype == 'complex64' or dtype == 'complex128':
            testData = np.random.normal(size=testShape).astype(
                dtype) + 1.0j * np.random.normal(size=testShape).astype(dtype)
        else:  # integers
            testData = np.random.randint(10, size=testShape).astype(dtype)

        testSignal = signals.Signal2D(testData)
        if lazy:
            testSignal = testSignal.as_lazy()
        # Unfortunately one cannot iterate over axes_manager in a Pythonic way
        # for axis in testSignal.axes_manager:
        testSignal.axes_manager[0].name = 'z'
        testSignal.axes_manager[0].scale = np.random.uniform(low=0.0, high=1.0)
        testSignal.axes_manager[0].units = 'nm'
        testSignal.axes_manager[1].name = 'x'
        testSignal.axes_manager[1].scale = np.random.uniform(low=0.0, high=1.0)
        testSignal.axes_manager[1].units = 'nm'
        testSignal.axes_manager[2].name = 'y'
        testSignal.axes_manager[2].scale = np.random.uniform(low=0.0, high=1.0)
        testSignal.axes_manager[2].units = 'nm'

        # Meta-data that goes into MRC fixed header
        testSignal.metadata.set_item('Acquisition_instrument.TEM.beam_energy',
                                     300.0)
        # Meta-data that goes into JSON extended header
        testSignal.metadata.set_item(
            'Acquisition_instrument.TEM.magnification', 25000)
        testSignal.metadata.set_item(
            'Signal.Noise_properties.Variance_linear_model.gain_factor', 1.0)

        save(mrcName,
             testSignal,
             compressor=compressor,
             clevel=clevel,
             do_async=do_async,
             **kwargs)
        if do_async:
            # Poll file on disk since we don't return the
            # concurrent.futures.Future
            t_stop = perf_counter() + MAX_ASYNC_TIME
            sleep(0.005)
            while (perf_counter() < t_stop):
                try:
                    fh = open(mrcName, 'a')
                    fh.close()
                    break
                except IOError:
                    sleep(0.001)
            print("Time to save file: {} s".format(perf_counter() -
                                                   (t_stop - MAX_ASYNC_TIME)))
            sleep(0.1)

        reSignal = load(mrcName)
        try:
            os.remove(mrcName)
        except IOError:
            print("Warning: file {} left on disk".format(mrcName))

        npt.assert_array_almost_equal(testSignal.data.shape,
                                      reSignal.data.shape)
        npt.assert_array_almost_equal(testSignal.data, reSignal.data)
        npt.assert_almost_equal(
            testSignal.metadata.Acquisition_instrument.TEM.beam_energy,
            reSignal.metadata.Acquisition_instrument.TEM.beam_energy)
        npt.assert_almost_equal(
            testSignal.metadata.Acquisition_instrument.TEM.magnification,
            reSignal.metadata.Acquisition_instrument.TEM.magnification)

        for aName in ['x', 'y', 'z']:
            npt.assert_equal(testSignal.axes_manager[aName].size,
                             reSignal.axes_manager[aName].size)
            npt.assert_almost_equal(testSignal.axes_manager[aName].scale,
                                    reSignal.axes_manager[aName].scale)

        if dtype == 'complex64':
            assert isinstance(reSignal, signals.ComplexSignal2D)
        else:
            assert isinstance(reSignal, signals.Signal2D)
        assert_deep_almost_equal(testSignal.axes_manager.as_dictionary(),
                                 reSignal.axes_manager.as_dictionary())
        assert_deep_almost_equal(testSignal.metadata.as_dictionary(),
                                 reSignal.metadata.as_dictionary())

        return reSignal
Esempio n. 21
0
 def setup_method(self, method):
     self.signal = signals.Signal2D(np.arange(24).reshape(6, 4))
     self.data = self.signal.data.copy()
Esempio n. 22
0
from hyperspy import signals
from hyperspy.misc.machine_learning import import_sklearn

sklearn = pytest.importorskip("sklearn", reason="sklearn not installed")

if import_sklearn.sklearn_installed:
    # Create the data once, since the parametrizations
    # will repeat the decomposition and BSS unnecessarily
    rng1 = np.random.RandomState(123)
    signal1 = signals.Signal1D(rng1.uniform(size=(7, 5, 7)))
    signal1.decomposition()
    signal1.blind_source_separation(number_of_components=3)

    rng2 = np.random.RandomState(123)
    signal2 = signals.Signal2D(rng2.uniform(size=(7, 5, 7)))
    signal2.decomposition()
    signal2.blind_source_separation(number_of_components=3)
else:
    # No need to create the data, since BSS will fail
    # if sklearn is missing, and the pytest.importorskip
    # will skip the rest of the file anyway
    pass


class TestCluster1D:
    def setup_method(self):
        self.signal = signal1.deepcopy()
        self.navigation_mask = np.zeros((7, 5), dtype=bool)
        self.navigation_mask[4:6, 1:4] = True
        self.signal_mask = np.zeros((7,), dtype=bool)
Esempio n. 23
0
 def setUp(self):
     self.signal = signals.Signal2D(np.arange(24).reshape(6, 4))
     self.data = self.signal.data.copy()