Esempio n. 1
0
    def __init__(self, domain: Domain, seed: int = None):
        """Initialise the :class:`RandomSearch` search space.

        Args:
            domain: :class:`Domain`. The domain of the objective function.
                It will be sampled uniformly using the :py:meth:`sample()` method of the :class:`Domain`.
            seed: (optional) :obj:`int`. The seed for the domain sampling.
        """
        if seed is not None:
            domain = Domain(domain.as_dict(), seed=seed)
        super(RandomSearch, self).__init__(domain)
Esempio n. 2
0
    def __init__(self, domain, seed=None):
        """Initialise the optimiser's domain.

        Args:
            domain: :class:`Domain`. The domain of the objective function.
            seed: (optional) :obj:`int`. The seed of the optimiser. Used for reproducibility purposes.
        """
        np.random.seed(seed)
        domain = Domain(domain.as_dict(), seed=seed)
        super(BayesianOptimisation, self).__init__(domain)
        converted_and_mappers = self._convert_to_gpyopt_domain(self.domain)
        self.gpyopt_domain, self._categorical_value_mapper, self._discrete_type_mapper = converted_and_mappers
        self._inv_categorical_value_mapper = {
            name: {v: k
                   for k, v in mapping.items()}
            for name, mapping in self._categorical_value_mapper.items()
        }
        self._data_x = np.array([[]])
        self._data_fx = np.array([[]])
        self.__is_empty_data = True
Esempio n. 3
0
def test_as_dict():
    dict_domain = {"a": {"b": [2, 3]}, "c": [0, 0.1]}
    domain = Domain(dict_domain)
    assert domain.as_dict() == dict_domain