Esempio n. 1
0
def load_experiment(data_path, diary_path, start_hour):

    # Configure an Experiment
    exp = Experiment()

    # Iterates over a set of files in a directory.
    # Unfortunately, we have to do it manually with RawProcessing because we are modifying the annotations
    print("Running %s" % data_path)
    for file in glob(data_path):
        print("FILE", file)
        pp = RawProcessing(file,
                           cols_for_activity=["stdMET_highIC_Branch"],
                           is_act_count=False,
                           col_for_datetime="REALTIME",
                           strftime="%d-%b-%Y %H:%M:%S",
                           col_for_pid="id",
                           col_for_hr="mean_hr",
                           device_location="dw")
        pp.data["hyp_act_x"] = pp.data[
            "hyp_act_x"] - 1.0  # adjust for the BBVA dataset

        w = Wearable(pp)  # Creates a wearable from a pp object
        exp.add_wearable(w)

    # Set frequency for every wearable in the collection
    exp.set_freq_in_secs(60)

    # Changing the hour the experiment starts from midnight (0) to 3pm (15)
    exp.change_start_hour_for_experiment_day(start_hour)

    diary = Diary().from_file(diary_path)
    exp.add_diary(diary)

    return exp
Esempio n. 2
0
def setup_experiment(file_path, diary_path, start_hour):
    # Configure an Experiment
    exp = Experiment()

    # Iterates over a set of files in a directory.
    # Unfortunately, we have to do it manually with RawProcessing because we are modifying the annotations
    for file in glob(file_path):
        pp = RawProcessing(file,
                           device_location="dw",
                           # HR information
                           col_for_hr="mean_hr",
                           # Activity information
                           cols_for_activity=["activity"],
                           is_act_count=True,
                           # Datetime information
                           col_for_datetime="linetime",
                           strftime="%Y-%m-%d %H:%M:%S",
                           # Participant information
                           col_for_pid="mesaid")

        w = Wearable(pp)  # Creates a wearable from a pp object
        # Invert the two_stages flag. Now True means sleeping and False means awake
        w.data["hyp_annotation"] = (w.data["stages"] > 0)
        exp.add_wearable(w)
        exp.set_freq_in_secs(30)
        w.change_start_hour_for_experiment_day(start_hour)

    diary = Diary().from_file(diary_path)
    exp.add_diary(diary)

    return exp
def load_experiment(data_path, start_hour):
    # Configure an Experiment
    exp = Experiment()

    # Iterates over a set of files in a directory.
    # Unfortunately, we have to do it manually with RawProcessing because we are modifying the annotations
    for file in glob(data_path):
        pp = RawProcessing(file,
                     # HR information
                     col_for_hr="hr",
                     # Activity information
                     cols_for_activity=["x", "y", "z"],
                     is_act_count=True,
                     # Datetime information
                     col_for_datetime="faketime",
                     strftime="%Y-%m-%d %H:%M:%S",
                     # Participant information
                     col_for_pid="pid")

        w = Wearable(pp)  # Creates a wearable from a pp object
        w.data["hyp_annotation"] = (w.data["label"] > 0)
        exp.add_wearable(w)

    # Set frequency for every wearable in the collection
    exp.set_freq_in_secs(15)

    # Changing the hour the experiment starts from midnight (0) to 3pm (15)
    exp.change_start_hour_for_experiment_day(start_hour)

    return exp
Esempio n. 4
0
def setup_experiment(preprocessor, file_path, start_hour):
    # Configure an Experiment
    exp = Experiment()

    # Iterates over a set of files in a directory.
    # Unfortunately, we have to do it manually with RawProcessing because we are modifying the annotations
    for file in tqdm(glob(file_path)):

        pp = preprocessor(file)
        w = Wearable(pp)  # Creates a wearable from a pp object
        # Invert the two_stages flag. Now True means sleeping and False means awake

        w.data["interval_sleep"] = w.data["interval"].isin(["REST-S", "REST"])
        w.data["sleep"] = ~w.data["wake"].astype(bool)

        exp.add_wearable(w)
        exp.set_freq_in_secs(30)
        w.change_start_hour_for_experiment_day(start_hour)

    return exp