Esempio n. 1
0
    def randomPosition(self):
        '''Return a random position vector'''
        res = iDynTree.Position()
        for i in range(0, 3):
            res.setVal(i, random.uniform(-10, 10))

        return res
Esempio n. 2
0
 def testTransformInverse(self, nrOfTests=5):
     print("Running test testTransformInverse")
     for i in range(0, nrOfTests):
         #RTF.testReport("Running test testTransformInverse for position");
         p = self.randomPosition()
         T = self.randomTransform()
         pZero = iDynTree.Position()
         pZero.zero()
         self.checkPointEqual(p - p, pZero, "testTransformInverse failed")
         self.checkPointEqual(T.inverse() * T * p, p,
                              "testTransformInverse failed")
         #RTF.testReport("Running test testTransformInverse for Twist");
         v = self.randomTwist()
         vZero = iDynTree.Twist()
         vZero.zero()
         self.checkSpatialVectorEqual(v - v, vZero, "v-v is not zero")
         self.checkSpatialVectorEqual(T.inverse() * T * v, v,
                                      "T.inverse()*T*v is not v")
         #RTF.testReport("Running test testTransformInverse for Wrench");
         f = self.randomWrench()
         fZero = iDynTree.Wrench()
         fZero.zero()
         self.checkSpatialVectorEqual(f - f, fZero, "f-f is not zero")
         self.checkSpatialVectorEqual(T.inverse() * T * f, f,
                                      "T.inverse()*T*f is not f")
    def _to_idyntree_position(position: np.ndarray):
        if position.size != 3:
            raise ValueError("The position must have 3 elements")

        import iDynTree
        p = iDynTree.Position()
        for i in range(3):
            p.setVal(i, position[i])

        return p
Esempio n. 4
0
 def randomTransform(self):
     ''' Return a random Transform '''
     res = iDynTree.Transform()
     res.setPosition(
         iDynTree.Position(random.uniform(-10, 10), random.uniform(-10, 10),
                           random.uniform(-10, 10)))
     res.setRotation(
         iDynTree.Rotation.RPY(random.uniform(-10, 10),
                               random.uniform(-10, 10),
                               random.uniform(-10, 10)))
     return res
Esempio n. 5
0
    def objectiveFunc(self, x, test=False):
        self.iter_cnt += 1
        print("call #{}/{}".format(self.iter_cnt, self.iter_max))

        wf, q, a, b = self.vecToParams(x)
        
        if self.config['verbose']:
            print('wf {}'.format(wf))
            print('a {}'.format(np.round(a,5).tolist()))
            print('b {}'.format(np.round(b,5).tolist()))
            print('q {}'.format(np.round(q,5).tolist()))

        #input vars out of bounds, skip call
        if not self.testBounds(x):
            # give penalty obj value for out of bounds (because we shouldn't get here)
            # TODO: for some algorithms (with augemented lagrangian added bounds) this should
            # not be very high as it is added again anyway)
            f = 1000.0
            if self.config['minVelocityConstraint']:
                g = [10.0]*self.num_constraints
            else:
                g = [10.0]*self.num_constraints

            fail = 1.0
            return f, g, fail

        self.trajectory.initWithParams(a,b,q, self.nf, wf)

        old_verbose = self.config['verbose']
        self.config['verbose'] = 0
        #old_floatingBase = self.config['floatingBase']
        #self.config['floatingBase'] = 0
        trajectory_data, data = self.sim_func(self.config, self.trajectory, model=self.model)

        self.config['verbose'] = old_verbose
        #self.config['floatingBase'] = old_floatingBase

        self.last_trajectory_data = trajectory_data
        if self.config['showOptimizationTrajs']:
            plotter(self.config, data=trajectory_data)

        f = np.linalg.cond(self.model.YBase)
        #f = np.log(np.linalg.det(self.model.YBase.T.dot(self.model.YBase)))   #fisher information matrix

        #xBaseModel = np.dot(model.Binv | K, model.xStdModel)
        #f = np.linalg.cond(model.YBase.dot(np.diag(xBaseModel)))    #weighted with CAD params

        f1 = 0
        # add constraints  (later tested for all: g(n) <= 0)
        g = [1e10]*self.num_constraints
        jn = self.model.jointNames
        for n in range(self.num_dofs):
            # check for joint limits
            # joint pos lower
            print("minma of trajectory",np.min(trajectory_data['positions'][:, n]))
            print("maxima of trajectory",np.max(trajectory_data['positions'][:, n]))
            
            if len(self.config['ovrPosLimit'])>n and self.config['ovrPosLimit'][n]:
                g[n] = np.deg2rad(self.config['ovrPosLimit'][n][0]) - np.min(trajectory_data['positions'][:, n])
                
            else:
                g[n] = self.limits[jn[n]]['lower'] - np.min(trajectory_data['positions'][:, n])
            # joint pos upper
            if len(self.config['ovrPosLimit'])>n and self.config['ovrPosLimit'][n]:
                g[self.num_dofs+n] = np.max(trajectory_data['positions'][:, n]) - np.deg2rad(self.config['ovrPosLimit'][n][1])
            else:
                g[self.num_dofs+n] = np.max(trajectory_data['positions'][:, n]) - self.limits[jn[n]]['upper']
            # max joint vel
            #g[2*self.num_dofs+n] = np.max(np.abs(trajectory_data['velocities'][:, n])) - self.limits[jn[n]]['velocity']
            
            # max torques
           # g[3*self.num_dofs+n] = np.nanmax(np.abs(data.samples['torques'][:, n])) - self.limits[jn[n]]['torque']

            '''if self.config['minVelocityConstraint']:
                # max joint vel of trajectory should at least be 10% of joint limit
                g[3*self.num_dofs+n] = self.limits[jn[n]]['velocity']*self.config['minVelocityPercentage'] - \
                                    np.max(np.abs(trajectory_data['velocities'][:, n]))'''

            # highest joint torque should at least be 10% of joint limit
            '''g[5*self.num_dofs+n] = self.limits[jn[n]]['torque']*0.1 - np.max(np.abs(data.samples['torques'][:, n]))
            f_tmp = self.limits[jn[n]]['torque']*0.1 - np.max(np.abs(data.samples['torques'][:, n]))
            if f_tmp > 0:
                f1+=f_tmp'''
        print(g)   
        # check collision constraints
        # (for whole trajectory but only get closest distance as constraint value)
        c_s = self.num_constraints - self.num_coll_constraints  # start where collision constraints start
        traversal = iDynTree.Traversal()
        success = self.idyn_model.computeFullTreeTraversal(traversal)
        rotation = iDynTree.Rotation(1.0, 0.0, 0.0,
                                     0.0, 1.0, 0.0,
                                     0.0, 0.0, 1.0)
        position = iDynTree.Position(0.0, 0.0, 0.0)
        worldHbase = iDynTree.Transform(rotation, position)
        jointPosition = iDynTree.VectorDynSize(5)
        
        if self.config['verbose'] > 1:
            print('checking collisions')
        for p in range(0, trajectory_data['positions'].shape[0], 10):
            g_cnt1 = 0
            g_cnt2 = 1
        
            if self.config['verbose'] > 1:
                print("Sample {}".format(p))
            q = trajectory_data['positions'][p]

            for i in range(len(q)):
                jointPosition[i] = q[i]

            linkPositions = iDynTree.LinkPositions(self.idyn_model) 
            iDynTree.ForwardPositionKinematics(self.idyn_model, traversal, worldHbase,jointPosition, linkPositions)
            pose_link5 = linkPositions(5)
            z = pose_link5.getPosition().getVal(2)
            origin = (0, 0 , 0)
            end_eff = (pose_link5.getPosition().getVal(0), pose_link5.getPosition().getVal(1), (pose_link5.getPosition().getVal(2)))
            dist = distance.euclidean(origin, end_eff)
            
            if(z < 0.35 ):
                if (z < g[c_s+g_cnt1]):
                    g[c_s+g_cnt1] = z
               
            if(dist < 0.25):
                if (dist < g[c_s+g_cnt2]):
                    g[c_s+g_cnt2] = dist
                
                
                      
            '''for l0 in range(self.model.num_links + len(self.world_links)):
                for l1 in range(self.model.num_links + len(self.world_links)):
                    l0_name = (self.model.linkNames + self.world_links)[l0]
                    l1_name = (self.model.linkNames + self.world_links)[l1]

                    if (l0 >= l1):  # don't need, distance is the same in both directions; same link never collides
                        continue
                    if l0_name in self.config['ignoreLinksForCollision'] \
                            or l1_name in self.config['ignoreLinksForCollision']:
                        continue
                    if [l0_name, l1_name] in self.config['ignoreLinkPairsForCollision'] or \
                       [l1_name, l0_name] in self.config['ignoreLinkPairsForCollision']:
                        continue

                    # neighbors can't collide with a proper joint range, so ignore--
                    if l0 < self.model.num_links and l1 < self.model.num_links:
                        if l0_name in self.neighbors[l1_name]['links'] or l1_name in self.neighbors[l0_name]['links']:
                            continue

                    if l0 < l1:
                        d = self.getLinkDistance(l0_name, l1_name, q)
                        if d < g[c_s+g_cnt]:
                            print("l0: {} l1: {}".format(l0,l1))
                            g[c_s+g_cnt] = d
                            
                        g_cnt += 1'''

        self.last_g = g
        

        #add min join torques as second objective
        if f1 > 0:
            f+= f1
            print("added cost: {}".format(f1))

        c = self.testConstraints(g)
        if c:
            print(Fore.GREEN, end=' ')
        else:
            print(Fore.YELLOW, end=' ')

        print("objective function value: {} (last best: {} + {})".format(f,
                                                            self.last_best_f-self.last_best_f_f1,
                                                            self.last_best_f_f1), end=' ')
        print(Fore.RESET)

        if self.config['verbose']:
            if self.opt_prob.is_gradient:
                print("(Gradient evaluation)")

        if self.mpi_rank == 0 and not self.opt_prob.is_gradient and self.config['showOptimizationGraph']:
            self.xar.append(self.iter_cnt)
            self.yar.append(f)
            self.x_constr.append(c)
            self.updateGraph()

        self.showVisualizerTrajectory(self.trajectory)

        #keep last best solution (some solvers don't keep it)
        if c and f < self.last_best_f:
            self.last_best_f = f
            self.last_best_f_f1 = f1
            self.last_best_sol = x

        print("\n\n")

        fail = 0.0
        #funcs = {}
        #funcs['opt'] = f
        #funcs['con'] = g
        #return funcs, fail
        return f, g, fail