Esempio n. 1
0
def visualize_bounding_boxes(ibs,
                             config,
                             version,
                             gid_list=None,
                             randomize=False,
                             num_images=10,
                             output_path=None):
    if gid_list is None:
        gid_list = general_get_imageset_gids(ibs, 'TEST_SET', **config)

    if randomize:
        random.shuffle(gid_list)

    if num_images not in [-1, None]:
        num_images = min(num_images, len(gid_list))
        gid_list = gid_list[:num_images]

    uuid_list = ibs.get_image_uuids(gid_list)

    assert version is not None
    version = version.lower()
    if version == 'prediction':
        print('\tGather Predictions')
        val_dict = localizer_parse_pred(ibs, test_gid_list=gid_list, **config)
    elif version == 'ground_truth':
        print('\tGather Ground-Truth')
        val_dict = general_parse_gt(ibs, test_gid_list=gid_list, **config)

    if output_path is None:
        output_path = abspath(expanduser(join('~', 'Desktop', 'bboxes')))
        ut.ensuredir(output_path)

    for gid, image_uuid in zip(gid_list, uuid_list):
        image = ibs.get_images(gid)
        image = _resize(image, t_width=500)
        h, w, c = image.shape

        val_list = val_dict[image_uuid]

        for val in val_list:
            xbr = int(np.around(val['xbr'] * w))
            ybr = int(np.around(val['ybr'] * h))
            xtl = int(np.around(val['xtl'] * w))
            ytl = int(np.around(val['ytl'] * h))
            cv2.rectangle(image, (xtl, ytl), (xbr, ybr), (0, 140, 255), 4)

        write_filename = 'bboxes_%d_%s.png' % (
            gid,
            version,
        )
        write_filepath = join(output_path, write_filename)
        print(write_filepath)
        cv2.imwrite(write_filepath, image)
Esempio n. 2
0
def classifier_visualize_training_localizations(ibs,
                                                classifier_weight_filepath,
                                                species_list=['zebra'],
                                                scheme=2,
                                                output_path=None,
                                                values=None,
                                                **kwargs):
    def _draw(image_dict, list_, color):
        for _ in list_:
            vals = _['gid'], _['xbr'], _['ybr'], _['xtl'], _['ytl']
            gid, xbr, ybr, xtl, ytl = vals
            height, width = image_dict[gid].shape[:2]
            xbr = int(xbr * width)
            ybr = int(ybr * height)
            xtl = int(xtl * width)
            ytl = int(ytl * height)
            image = image_dict[gid]
            cv2.rectangle(image, (xtl, ytl), (xbr, ybr), color, 4)

    def _write_chips(chip_list, output_path_fmt_str):
        interpolation = cv2.INTER_LANCZOS4
        warpkw = dict(interpolation=interpolation)
        chip_list = []
        for _ in list_:
            vals = _['gid'], _['xbr'], _['ybr'], _['xtl'], _['ytl']
            gid, xbr, ybr, xtl, ytl = vals
            height, width = image_dict[gid].shape[:2]
            xbr = int(xbr * width)
            ybr = int(ybr * height)
            xtl = int(xtl * width)
            ytl = int(ytl * height)
            image = image_dict[gid]
            # Get chips
            chip = image[ytl:ybr, xtl:xbr, :]
            chip = cv2.resize(chip, (192, 192), **warpkw)
            chip_list.append(chip)
        return chip_list

    # Get output path
    if output_path is None:
        output_path = abspath(
            expanduser(join('~', 'Desktop', 'output-bootstrap')))
    ut.delete(output_path)
    ut.ensuredir(output_path)

    if values is None:
        # Load data
        print('Loading pre-trained features for filtered localizations')
        train_gid_list = general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs)
        train_gid_list = train_gid_list[:10]

        config = {
            'algo': '_COMBINED',
            'species_set': set(species_list),
            'features': True,
            'feature2_algo': 'resnet',
            'classify': True,
            'classifier_algo': 'svm',
            'classifier_weight_filepath': classifier_weight_filepath,
            'nms': True,
            'nms_thresh': 0.50,
            # 'thresh'       : True,
            # 'index_thresh' : 0.25,
        }

        print('\tGather Ground-Truth')
        gt_dict = general_parse_gt(ibs, test_gid_list=train_gid_list, **config)

        print('\tGather Predictions')
        pred_dict = localizer_parse_pred(ibs,
                                         test_gid_list=train_gid_list,
                                         **config)

        print('Mine proposals')
        reviewed_gid_dict = {}
        values = _bootstrap_mine(ibs, gt_dict, pred_dict, scheme,
                                 reviewed_gid_dict, **kwargs)

    mined_gid_list, mined_gt_list, mined_pos_list, mined_neg_list = values

    print('Prepare images')
    # Get images and a dictionary based on their gids
    image_list = ibs.get_images(mined_gid_list)
    image_dict = {gid: image for gid, image in zip(mined_gid_list, image_list)}

    # Draw positives
    list_ = mined_pos_list
    color = (0, 255, 0)
    chip_list = _draw(image_dict, list_, color)
    pos_path = join(output_path, 'positives')
    ut.ensuredir(pos_path)
    _write_chips(chip_list, join(pos_path, 'chips_pos_%05d.png'))

    # Draw negatives
    list_ = mined_neg_list
    color = (0, 0, 255)
    chip_list = _draw(image_dict, list_, color)
    neg_path = join(output_path, 'negatives')
    ut.ensuredir(neg_path)
    _write_chips(chip_list, join(neg_path, 'chips_neg_%05d.png'))

    # Draw positives
    list_ = mined_gt_list
    color = (255, 0, 0)
    _draw(image_dict, list_, color)

    print('Write images to %r' % (output_path, ))
    # Write images to disk
    for gid in image_dict:
        output_filename = 'localizations_gid_%d.png' % (gid, )
        output_filepath = join(output_path, output_filename)
        cv2.imwrite(output_filepath, image_dict[gid])
Esempio n. 3
0
def export_to_xml(ibs,
                  species_list,
                  species_mapping=None,
                  offset='auto',
                  enforce_viewpoint=False,
                  target_size=900,
                  purge=False,
                  use_maximum_linear_dimension=True,
                  use_existing_train_test=True,
                  include_parts=False,
                  gid_list=None,
                  output_path=None,
                  min_annot_size=5,
                  **kwargs):
    """Create training XML for training models."""
    import random
    from datetime import date
    from detecttools.pypascalmarkup import PascalVOC_Markup_Annotation

    if species_mapping is not None:
        print('Received species_mapping = %r' % (species_mapping, ))
        print('Using species_list = %r' % (species_list, ))

    def _add_annotation(bbox,
                        theta,
                        species_name,
                        viewpoint,
                        interest,
                        decrease,
                        part_name=None):
        if species_name is not None:
            if species_name not in species_list:
                return
        # Transformation matrix
        R = vt.rotation_around_bbox_mat3x3(theta, bbox)
        # Get verticies of the annotation polygon
        verts = vt.verts_from_bbox(bbox, close=True)
        # Rotate and transform vertices
        xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
        trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
        new_verts = np.round(trans_pts).astype(np.int).T.tolist()
        x_points = [pt[0] for pt in new_verts]
        y_points = [pt[1] for pt in new_verts]
        xmin = int(min(x_points) * decrease)
        xmax = int(max(x_points) * decrease)
        ymin = int(min(y_points) * decrease)
        ymax = int(max(y_points) * decrease)
        # Bounds check
        xmin = max(xmin, 0)
        ymin = max(ymin, 0)
        xmax = min(xmax, width - 1)
        ymax = min(ymax, height - 1)
        # Get info
        info = {}

        w_ = xmax - xmin
        h_ = ymax - ymin
        if w_ < min_annot_size:
            return
        if h_ < min_annot_size:
            return

        if viewpoint != -1 and viewpoint is not None:
            info['pose'] = viewpoint

        if interest is not None:
            info['interest'] = '1' if interest else '0'

        if part_name is not None:
            species_name = '%s+%s' % (
                species_name,
                part_name,
            )

        area = w_ * h_
        print('\t\tAdding %r with area %0.04f pixels^2' % (
            species_name,
            area,
        ))

        annotation.add_object(species_name, (xmax, xmin, ymax, ymin), **info)

    current_year = int(date.today().year)
    information = {'database_name': ibs.get_dbname()}
    import datetime
    now = datetime.datetime.now()
    folder = 'VOC%d' % (now.year, )

    if output_path is None:
        output_path = ibs.get_cachedir()

    datadir = join(output_path, 'VOCdevkit', folder)
    imagedir = join(datadir, 'JPEGImages')
    annotdir = join(datadir, 'Annotations')
    setsdir = join(datadir, 'ImageSets')
    mainsetsdir = join(setsdir, 'Main')

    if purge:
        ut.delete(datadir)

    ut.ensuredir(datadir)
    ut.ensuredir(imagedir)
    ut.ensuredir(annotdir)
    ut.ensuredir(setsdir)
    ut.ensuredir(mainsetsdir)

    # Get all gids and process them
    if gid_list is None:
        gid_list = sorted(ibs.get_valid_gids())

    sets_dict = {
        'test': [],
        'train': [],
        'trainval': [],
        'val': [],
    }
    index = 1 if offset == 'auto' else offset

    # Make a preliminary train / test split as imagesets or use the existing ones
    if not use_existing_train_test:
        ibs.imageset_train_test_split(**kwargs)

    train_gid_set = set(general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs))
    test_gid_set = set(general_get_imageset_gids(ibs, 'TEST_SET', **kwargs))

    print('Exporting %d images' % (len(gid_list), ))
    for gid in gid_list:
        aid_list = ibs.get_image_aids(gid)
        image_uri = ibs.get_image_uris(gid)
        image_path = ibs.get_image_paths(gid)
        if len(aid_list) > -1:
            fulldir = image_path.split('/')
            filename = fulldir.pop()
            extension = filename.split('.')[-1]  # NOQA
            out_name = '%d_%06d' % (
                current_year,
                index,
            )
            out_img = '%s.jpg' % (out_name, )

            _image = ibs.get_images(gid)
            height, width, channels = _image.shape

            condition = width > height if use_maximum_linear_dimension else width < height
            if condition:
                ratio = height / width
                decrease = target_size / width
                width = target_size
                height = int(target_size * ratio)
            else:
                ratio = width / height
                decrease = target_size / height
                height = target_size
                width = int(target_size * ratio)

            dst_img = join(imagedir, out_img)
            _image = vt.resize(_image, (width, height))
            vt.imwrite(dst_img, _image)

            annotation = PascalVOC_Markup_Annotation(dst_img,
                                                     folder,
                                                     out_img,
                                                     source=image_uri,
                                                     **information)
            bbox_list = ibs.get_annot_bboxes(aid_list)
            theta_list = ibs.get_annot_thetas(aid_list)
            species_name_list = ibs.get_annot_species_texts(aid_list)
            viewpoint_list = ibs.get_annot_viewpoints(aid_list)
            interest_list = ibs.get_annot_interest(aid_list)
            part_rowids_list = ibs.get_annot_part_rowids(aid_list)
            zipped = zip(bbox_list, theta_list, species_name_list,
                         viewpoint_list, interest_list, part_rowids_list)
            for bbox, theta, species_name, viewpoint, interest, part_rowid_list in zipped:
                if species_mapping is not None:
                    species_name = species_mapping.get(species_name,
                                                       species_name)

                _add_annotation(bbox, theta, species_name, viewpoint, interest,
                                decrease)
                if include_parts and len(part_rowid_list) > 0:
                    part_bbox_list = ibs.get_part_bboxes(part_rowid_list)
                    part_theta_list = ibs.get_part_thetas(part_rowid_list)
                    part_name_list = ibs.get_part_tag_text(part_rowid_list)
                    part_zipped = zip(part_bbox_list, part_theta_list,
                                      part_name_list)
                    for part_bbox, part_theta, part_name in part_zipped:
                        _add_annotation(part_bbox,
                                        part_theta,
                                        species_name,
                                        viewpoint,
                                        None,
                                        decrease,
                                        part_name=part_name)

            out_filename = '%s.xml' % (out_name, )
            dst_annot = join(annotdir, out_filename)

            if gid in test_gid_set:
                sets_dict['test'].append(out_name)
            elif gid in train_gid_set:
                state = random.uniform(0.0, 1.0)
                if state <= 0.75:
                    sets_dict['train'].append(out_name)
                    sets_dict['trainval'].append(out_name)
                else:
                    sets_dict['val'].append(out_name)
                    sets_dict['trainval'].append(out_name)
            else:
                raise AssertionError(
                    'All gids must be either in the TRAIN_SET or TEST_SET imagesets'
                )

            # Write XML
            print('Copying:\n%r\n%r\n%r\n\n' % (
                image_path,
                dst_img,
                (width, height),
            ))
            xml_data = open(dst_annot, 'w')
            xml_data.write(annotation.xml())
            xml_data.close()
            while exists(dst_annot):
                index += 1
                if offset != 'auto':
                    break
                out_filename = '%d_%06d.xml' % (
                    current_year,
                    index,
                )
                dst_annot = join(annotdir, out_filename)
        else:
            print('Skipping:\n%r\n\n' % (image_path, ))

    for key in sets_dict.keys():
        manifest_filename = '%s.txt' % (key, )
        manifest_filepath = join(mainsetsdir, manifest_filename)
        with open(manifest_filepath, 'w') as file_:
            sets_dict[key].append('')
            content = sets_dict[key]
            content = '\n'.join(content)
            file_.write(content)

    print('...completed')
    return datadir
Esempio n. 4
0
def export_to_coco(ibs,
                   species_list,
                   species_mapping={},
                   target_size=2400,
                   use_maximum_linear_dimension=True,
                   use_existing_train_test=True,
                   gid_list=None,
                   include_reviews=False,
                   require_named=True,
                   output_images=True,
                   **kwargs):
    """Create training COCO dataset for training models."""
    from datetime import date
    import datetime
    import random
    import json

    print('Received species_mapping = %r' % (species_mapping, ))
    print('Using species_list = %r' % (species_list, ))

    current_year = int(date.today().year)
    datadir = abspath(join(ibs.get_cachedir(), 'coco'))
    annotdir = join(datadir, 'annotations')
    imagedir = join(datadir, 'images')
    image_dir_dict = {
        'train': join(imagedir, 'train%s' % (current_year, )),
        'val': join(imagedir, 'val%s' % (current_year, )),
        'test': join(imagedir, 'test%s' % (current_year, )),
    }

    ut.delete(datadir)
    ut.ensuredir(datadir)
    ut.ensuredir(annotdir)
    ut.ensuredir(imagedir)
    for dataset in image_dir_dict:
        ut.ensuredir(image_dir_dict[dataset])

    info = {
        'description': 'Wild Me %s Dataset' % (ibs.dbname, ),
        # 'url'                 : 'http://www.greatgrevysrally.com',
        'url': 'http://www.wildme.org',
        'version': '1.0',
        'year': current_year,
        'contributor': 'Wild Me, Jason Parham <*****@*****.**>',
        'date_created': datetime.datetime.utcnow().isoformat(' '),
        'ibeis_database_name': ibs.get_db_name(),
        'ibeis_database_uuid': str(ibs.get_db_init_uuid()),
    }

    licenses = [
        {
            'url': 'http://creativecommons.org/licenses/by-nc-nd/2.0/',
            'id': 3,
            'name': 'Attribution-NonCommercial-NoDerivs License',
        },
    ]

    assert len(species_list) == len(
        set(species_list)), 'Cannot have duplicate species in species_list'
    category_dict = {}
    categories = []
    for index, species in enumerate(sorted(species_list)):

        species = species_mapping.get(species, species)

        categories.append({
            'id': index,
            'name': species,
            'supercategory': 'animal',
        })
        category_dict[species] = index

    output_dict = {}
    for dataset in ['train', 'val', 'test']:
        output_dict[dataset] = {
            'info': info,
            'licenses': licenses,
            'categories': categories,
            'images': [],
            'annotations': [],
        }

    # Get all gids and process them
    if gid_list is None:
        aid_list = ibs.get_valid_aids()
        species_list_ = ibs.get_annot_species(aid_list)
        flag_list = [
            species_mapping.get(species_, species_) in species_list
            for species_ in species_list_
        ]
        aid_list = ut.compress(aid_list, flag_list)
        if require_named:
            nid_list = ibs.get_annot_nids(aid_list)
            flag_list = [nid >= 0 for nid in nid_list]
            aid_list = ut.compress(aid_list, flag_list)
        gid_list = sorted(list(set(ibs.get_annot_gids(aid_list))))

    # Make a preliminary train / test split as imagesets or use the existing ones
    if not use_existing_train_test:
        ibs.imageset_train_test_split(**kwargs)

    train_gid_set = set(general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs))
    test_gid_set = set(general_get_imageset_gids(ibs, 'TEST_SET', **kwargs))

    image_index = 1
    annot_index = 1

    aid_dict = {}

    print('Exporting %d images' % (len(gid_list), ))
    for gid in gid_list:

        if gid in test_gid_set:
            dataset = 'test'
        elif gid in train_gid_set:
            state = random.uniform(0.0, 1.0)
            if state <= 0.75:
                dataset = 'train'
            else:
                dataset = 'val'
        else:
            raise AssertionError(
                'All gids must be either in the TRAIN_SET or TEST_SET imagesets'
            )

        width, height = ibs.get_image_sizes(gid)
        if target_size is None:
            decrease = 1.0
        else:
            condition = width > height if use_maximum_linear_dimension else width < height
            if condition:
                ratio = height / width
                decrease = target_size / width
                width = target_size
                height = int(target_size * ratio)
            else:
                ratio = width / height
                decrease = target_size / height
                height = target_size
                width = int(target_size * ratio)

        image_path = ibs.get_image_paths(gid)
        image_filename = '%012d.jpg' % (image_index, )
        image_filepath = join(image_dir_dict[dataset], image_filename)

        if output_images:
            _image = ibs.get_images(gid)
            _image = vt.resize(_image, (width, height))
            vt.imwrite(image_filepath, _image)

        output_dict[dataset]['images'].append({
            'license':
            3,
            # 'file_name'        : image_filename,
            'file_name':
            basename(ibs.get_image_uris_original(gid)),
            'coco_url':
            None,
            'height':
            height,
            'width':
            width,
            'date_captured':
            ibs.get_image_datetime_str(gid).replace('/', '-'),
            'flickr_url':
            None,
            'id':
            image_index,
            'ibeis_image_uuid':
            str(ibs.get_image_uuids(gid)),
        })

        print('Copying:\n%r\n%r\n%r\n\n' % (
            image_path,
            image_filepath,
            (width, height),
        ))

        aid_list = ibs.get_image_aids(gid)
        bbox_list = ibs.get_annot_bboxes(aid_list)
        theta_list = ibs.get_annot_thetas(aid_list)
        species_name_list = ibs.get_annot_species_texts(aid_list)
        viewpoint_list = ibs.get_annot_viewpoints(aid_list)
        nid_list = ibs.get_annot_nids(aid_list)

        seen = 0
        zipped = zip(aid_list, bbox_list, theta_list, species_name_list,
                     viewpoint_list, nid_list)
        for aid, bbox, theta, species_name, viewpoint, nid in zipped:
            species_name = species_mapping.get(species_name, species_name)

            if species_name is None:
                continue

            if species_name not in species_list:
                continue

            if require_named and nid < 0:
                continue

            # Transformation matrix
            R = vt.rotation_around_bbox_mat3x3(theta, bbox)
            verts = vt.verts_from_bbox(bbox, close=True)
            xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
            trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
            new_verts = np.round(trans_pts).astype(np.int).T.tolist()

            x_points = [int(np.around(pt[0] * decrease)) for pt in new_verts]
            y_points = [int(np.around(pt[1] * decrease)) for pt in new_verts]
            segmentation = ut.flatten(list(zip(x_points, y_points)))

            xmin = max(min(x_points), 0)
            ymin = max(min(y_points), 0)
            xmax = min(max(x_points), width - 1)
            ymax = min(max(y_points), height - 1)

            w = xmax - xmin
            h = ymax - ymin
            area = w * h

            # individuals = ibs.get_name_aids(ibs.get_annot_nids(aid))
            reviews = ibs.get_review_rowids_from_single([aid])[0]
            user_list = ibs.get_review_identity(reviews)
            aid_tuple_list = ibs.get_review_aid_tuple(reviews)
            decision_list = ibs.get_review_decision_str(reviews)

            ids = []
            decisions = []
            zipped = zip(user_list, aid_tuple_list, decision_list)
            for user, aid_tuple, decision in zipped:
                if 'user:web' not in user:
                    continue
                match = list(set(aid_tuple) - set([aid]))
                assert len(match) == 1
                ids.append(match[0])
                decisions.append(decision.lower())

            xtl_, ytl_, w_, h_ = bbox
            xtl_ *= decrease
            ytl_ *= decrease
            w_ *= decrease
            h_ *= decrease

            annot = {
                'bbox': [xtl_, ytl_, w_, h_],
                'theta': theta,
                'viewpoint': viewpoint,
                'segmentation': [segmentation],
                'segmentation_bbox': [xmin, ymin, w, h],
                'area': area,
                'iscrowd': 0,
                'image_id': image_index,
                'category_id': category_dict[species_name],
                'id': annot_index,
                'ibeis_annot_uuid': str(ibs.get_annot_uuids(aid)),
                'ibeis_annot_name': str(ibs.get_annot_name_texts(aid)),
                # 'individual_ids'    : individuals,
            }
            if include_reviews:
                annot['review_ids'] = list(zip(ids, decisions))

            output_dict[dataset]['annotations'].append(annot)
            seen += 1

            print('\t\tAdding %r with area %0.04f pixels^2' % (
                species_name,
                area,
            ))

            aid_dict[aid] = annot_index
            annot_index += 1

        # assert seen > 0
        image_index += 1

    for dataset in output_dict:
        annots = output_dict[dataset]['annotations']
        for index in range(len(annots)):
            annot = annots[index]

            # Map internal aids to external annot index
            # individual_ids = annot['individual_ids']
            # individual_ids_ = []
            # for individual_id in individual_ids:
            #     if individual_id not in aid_dict:
            #         continue
            #     individual_id_ = aid_dict[individual_id]
            #     individual_ids_.append(individual_id_)
            # annot['individual_ids'] = individual_ids_

            # Map reviews
            if include_reviews:
                review_ids = annot['review_ids']
                review_ids_ = []
                for review in review_ids:
                    review_id, review_decision = review
                    if review_id not in aid_dict:
                        continue
                    review_id_ = aid_dict[review_id]
                    review_ = (
                        review_id_,
                        review_decision,
                    )
                    review_ids_.append(review_)
                annot['review_ids'] = review_ids_

            # Store
            output_dict[dataset]['annotations'][index] = annot

    for dataset in output_dict:
        json_filename = 'instances_%s%s.json' % (
            dataset,
            current_year,
        )
        json_filepath = join(annotdir, json_filename)

        with open(json_filepath, 'w') as json_file:
            json.dump(output_dict[dataset], json_file)

    print('...completed')
    return datadir