Esempio n. 1
0
 def test_histology_get_brain_regions(self):
     # first part of the test is to check on an actual track file
     for file_track in self.path_tracks.rglob("*_pts.csv"):
         xyz = histology.load_track_csv(file_track)
         channels, ins = histology.get_brain_regions(xyz=xyz, brain_atlas=brain_atlas)
     # also check that it works from an insertion
     channels, ins2 = histology.get_brain_regions(xyz=ins.xyz, brain_atlas=brain_atlas)
     self.assertTrue(channels.acronym[-1] == 'VISpm1')
     self.assertTrue(channels.acronym[0] == 'APN')
     a = np.array([ins.x, ins.y, ins.z, ins.phi, ins.theta, ins.depth])
     b = np.array([ins2.x, ins2.y, ins2.z, ins2.phi, ins2.theta, ins2.depth])
     self.assertTrue(np.all(np.isclose(a, b)))
Esempio n. 2
0
def compare_2_probes(dict1,dict2):
    '''
    Given two probes in the following format, it calculates the cerror between 
    the probes. Dict2 is compared to dict1
    Dict format for Insertion function
    {'x': 544.0,
    'y': 1285.0,
    'z': 0.0,
    'phi': 0.0,
    'theta': 5.0,
    'depth': 4501.0}
    INPUT:
        dict_1,dict_2: 2 dictionaries with probe coordinates
    OUTPUT:
        cecler: Comulative ecludian error
        r_miss: each channel that debiates from the intetion adds 1/divided by
        total number of channels. 1 is all are different
        r_out: number of unique regions in dict1 missed divided by total possible
    '''
    # mean eucledian error
    dict_1_ins = atlas.Insertion.from_dict(dict1)
    dict1_regions, _, dict1_xyz = histology.get_brain_regions(dict_1_ins.xyz)
    dict_2_ins = atlas.Insertion.from_dict(dict2)
    dict2_regions, _, dict2_xyz = histology.get_brain_regions(dict_2_ins.xyz)
    cecler = 0
    for i  in range(len(dict1_xyz)):
        cecler += distance.euclidean(dict1_xyz[i,:], dict2_xyz[i,:])
    mean_cecler = (cecler/len(dict1_xyz))*(10**6)
    
    #score areas missmatch
    r_miss = 0
    for i in range(len(dict1_regions['id'])):
        r_miss += 1 - int(dict1_regions['id'][i] == dict2_regions['id'][i])
    r_miss = r_miss/len(dict1_regions['id'])
    
    #percentage of regions totally missed
    r_out = (1 - len(np.intersect1d(np.unique(dict1_regions['id']), 
                               np.unique(dict2_regions['id'])))/
             len(np.unique(dict1_regions['id'])))
    
    return mean_cecler, r_miss, r_out
environment installation guide https://github.com/int-brain-lab/iblenv
'''
# Author: Olivier Winter

import numpy as np

from ibllib.pipes import histology
import ibllib.atlas as atlas

# === Parameters section (edit) ===
track_file = "/Users/gaelle/Downloads/electrodetracks_lic3/2019-08-27_lic3_002_probe00_pts.csv"
FULL_BLOWN_GUI = True  # set to False for simple matplotlib view

# === Code (do not edit) ===
ba = atlas.AllenAtlas(res_um=25)
xyz_picks = histology.load_track_csv(track_file)
bl, ins = histology.get_brain_regions(xyz_picks)

if FULL_BLOWN_GUI:
    from iblapps.histology import atlas_mpl
    mw, cax = atlas_mpl.viewatlas(ba, ap_um=np.mean(ins.xyz[:, 1]) * 1e6)
else:
    cax = ba.plot_cslice(ap_coordinate=np.mean(ins.xyz[:, 1]))

cax.plot(ins.xyz[:, 0] * 1e6, ins.xyz[:, 2] * 1e6)
cax.plot(bl.xyz[:, 0] * 1e6, bl.xyz[:, 2] * 1e6, '*')
# cax.plot(ba.bc.xscale * 1e6, ba.top[ba.bc.y2i(np.mean(ins.xyz[:, 1])), :] * 1e6)

if FULL_BLOWN_GUI:
    mw.mpl_widget.draw()