Esempio n. 1
0
def notched_bended_beam():

    fets_eval_4u = FETS2D4Q(mats_eval=MATS2DScalarDamage())
    fets_eval_cracked = FETSLSEval(parent_fets=fets_eval_4u)

    # Discretization
    fe_domain1 = FEGrid(coord_max=(5., 2., 0.),
                        shape=(3, 2),
                        fets_eval=fets_eval_4u)

    fe_child_domain = FERefinementGrid(parent_domain=fe_domain1,
                                       fets_eval=fets_eval_cracked,
                                       fine_cell_shape=(1, 1))

    crack_level_set = lambda X: X[0] - 2.5

    fe_child_domain.refine_elem((1, 0), crack_level_set)
    dots = fe_child_domain.new_dots()

    fe_domain = FEDomainList(subdomains=[fe_domain1])
    fe_domain_tree = FEDomainTree(domain_list=fe_domain)

    ts = TS(
        dof_resultants=True,
        sdomain=[fe_domain1, fe_child_domain],
        bcond_list=[
            BCDofGroup(var='u',
                       value=0.,
                       dims=[0, 1],
                       get_dof_method=fe_domain1.get_left_dofs),
            BCDofGroup(var='u',
                       value=0.,
                       dims=[0, 1],
                       get_dof_method=fe_domain1.get_right_dofs),
            BCDofGroup(var='f',
                       value=-1.,
                       dims=[1],
                       get_dof_method=fe_domain1.get_top_dofs),
        ],
        rtrace_list=[
            #                              RTDofGraph(name = 'Fi,right over u_right (iteration)' ,
            #                                   var_y = 'F_int', idx_y = 0,
            #                                   var_x = 'U_k', idx_x = 1),
            #                        RTraceDomainListField(name = 'Stress' ,
            #                             var = 'sig_app', idx = 0, warp = True ),
            #                             RTraceDomainField(name = 'Displacement' ,
            #                                        var = 'u', idx = 0),
            #                                 RTraceDomainField(name = 'N0' ,
            #                                              var = 'N_mtx', idx = 0,
            #                                              record_on = 'update')
            #
        ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))

    print(tloop.eval())
def notched_bended_beam():

    fets_eval_4u      = FETS2D4Q( mats_eval = MATS2DScalarDamage() )
    fets_eval_cracked = FETSLSEval( parent_fets  = fets_eval_4u )

    # Discretization
    fe_domain1 = FEGrid( coord_max = (5.,2.,0.), 
                               shape   = (3,2),
                               fets_eval = fets_eval_4u )

    fe_child_domain = FERefinementGrid( parent_domain = fe_domain1,
                                    fets_eval = fets_eval_cracked,
                                    fine_cell_shape = (1,1) )

    crack_level_set = lambda X: X[0] - 2.5  
    
    fe_child_domain.refine_elem( (1,0), crack_level_set )
    dots = fe_child_domain.new_dots()

    fe_domain  = FEDomainList( subdomains = [ fe_domain1 ] )
    fe_domain_tree = FEDomainTree( domain_list = fe_domain )
    
    ts = TS( dof_resultants = True,
             sdomain = [ fe_domain1, fe_child_domain ],
             bcond_list =  [BCDofGroup(var='u', value = 0., dims = [0,1],
                                       get_dof_method = fe_domain1.get_left_dofs ),
                            BCDofGroup(var='u', value = 0., dims = [0,1],
                                       get_dof_method = fe_domain1.get_right_dofs ),
                            BCDofGroup(var='f', value = -1., dims = [1],
                                       get_dof_method = fe_domain1.get_top_dofs ),
                                       ],
             rtrace_list =  [
#                              RTraceGraph(name = 'Fi,right over u_right (iteration)' ,
#                                   var_y = 'F_int', idx_y = 0,
#                                   var_x = 'U_k', idx_x = 1),
#                        RTraceDomainListField(name = 'Stress' ,
#                             var = 'sig_app', idx = 0, warp = True ),
#                             RTraceDomainField(name = 'Displacement' ,
#                                        var = 'u', idx = 0),
#                                 RTraceDomainField(name = 'N0' ,
#                                              var = 'N_mtx', idx = 0,
#                                              record_on = 'update')
#                          
                    ]             
                )
    
    # Add the time-loop control
    tloop = TLoop( tstepper = ts,
                   tline  = TLine( min = 0.0,  step = 1, max = 1.0 ))
    
    print tloop.eval()
Esempio n. 3
0
    def _get_fe_domain( self ):

        # Discretization
        fe_domain = FEDomain()

        fe_rgrid = FERefinementGrid( domain = fe_domain, fets_eval = self.fets )

        # SIDE EFFECT - illegal. The component of FEDomain should
        # only be reachable through the FEDomain - this is to be
        # implemented - for now, there is a property
        # getting the fe_grid object but assurring that fe_domain
        # has been constructed first
        self._fe_grid = FEGrid( level = fe_rgrid,
                          coord_min = ( -1.0, -1.0, -1.0 ),
                          coord_max = ( 1.0, 1.0, 1.0 ),
                          geo_transform = self.orig_sheet,
                          shape = ( self.shape_xy, self.shape_xy, self.shape_z ),
                          fets_eval = self.fets )

        fe_child_grid = FERefinementGrid( parent = fe_rgrid,
                                          fets_eval = self.fets_fold,
                                          fine_cell_shape = ( 1, 1, 1 ) )

        fold_dof = self.fold_dof
        side_dof = self.n_dofs_xy - 1
        for i in range( side_dof ):
            fe_child_grid.refine_elem( ( i, fold_dof, 0 ) )

        for i in range( fold_dof ):
            fe_child_grid.refine_elem( ( fold_dof, i, 0 ) )

        for i in range( fold_dof + 1, side_dof ):
            fe_child_grid.refine_elem( ( fold_dof, i, 0 ) )

        return fe_domain
Esempio n. 4
0
    def _get_fe_domain( self ):

        fets_4u = FETS3D8H( mats_eval = MATS3DElastic( E = 10, initial_strain = fold_strain ) )
        # Discretization
        fe_domain = FEDomain()

        fe_rgrid = FERefinementGrid( domain = fe_domain, fets_eval = self.fets )

        fe_grid = FEGrid( level = fe_rgrid,
                          coord_min = ( -1.0, -1.0, -1.0 ),
                          coord_max = ( 1.0, 1.0, 1.0 ),
                          geo_transform = self.orig_sheet,
                          shape = ( self.shape_x, self.shape_y, self.shape_z ),
                          fets_eval = self.fets )

        fe_child_grid = FERefinementGrid( 
                                          parent = fe_rgrid,
                                          fets_eval = fets_4u,
                                          fine_cell_shape = ( 1, 1, 1 ) )

        for i in range( 1 ):
            fe_child_grid.refine_elem( ( 1, i, 0 ) )

        return fe_domain
Esempio n. 5
0
def combined_fe2D4q_with_fe2D4q8u():

    fets_eval_4u_conc = FETS2D4Q(mats_eval=MATS2DElastic(E=28500, nu=0.2))
    fets_eval_4u_steel = FETS2D4Q(mats_eval=MATS2DElastic(E=210000, nu=0.25))
    fets_eval_8u = FETS2D4Q8U(mats_eval=MATS2DElastic())

    # Discretization
    fe_domain = FEDomain()

    fe_grid_level1 = FERefinementGrid(name='master grid',
                                      fets_eval=fets_eval_4u_conc,
                                      domain=fe_domain)

    fe_grid = FEGrid(level=fe_grid_level1,
                     coord_max=(2., 6., 0.),
                     shape=(11, 30),
                     fets_eval=fets_eval_4u_conc)

    fe_grid_level2 = FERefinementGrid(name='refinement grid',
                                      parent=fe_grid_level1,
                                      fets_eval=fets_eval_4u_steel,
                                      fine_cell_shape=(1, 1))

    # fe_grid_level1[ 5, :5 ].refine_using( fe_grid_level2 )
    # 1. first get the slice for the level - distinguish it from the slice at the subgrid
    #    this includes slicing in the subgrids. what if the subgrid does not exist?
    #
    #    Each subgrid must hold its own slice within the level. The index operator fills
    #    the grid [...] instanciates the whole grid and returns the instance of
    #    FEGridLevelSlice. The expanded subgrid contains its constructor slice.
    #
    # 2. If the slice is within an existing slice no change in the FESubgrid is required
    #    only the instance of the slice is returned. The FEGridLevelSlice goes always into
    #    an expanded part of FEGrid.
    #
    # 3. If the slice does not fit into any existing slice - all domain with an intersection
    #    of the existing slice must be constructed as well.
    #
    # 2. deactivate elements
    # 3.
    # BUT how to impose the boundary conditions on the particular refinement? The
    # slice has an attribute

    fe_grid_level2.refine_elem((5, 0))
    fe_grid_level2.refine_elem((5, 1))
    fe_grid_level2.refine_elem((5, 2))
    fe_grid_level2.refine_elem((5, 3))
    fe_grid_level2.refine_elem((5, 4))
    fe_grid_level2.refine_elem((5, 5))

    # apply the boundary condition on a subgrid
    #
    print fe_grid_level2.fe_subgrids
    fe_first_grid = fe_grid_level2.fe_subgrids[0]

    ts = TS(
        dof_resultants=True,
        sdomain=fe_domain,
        bcond_list=[
            BCSlice(var='f', value=1., dims=[0], slice=fe_grid[:, -1, :, -1]),
            BCSlice(var='u',
                    value=0.,
                    dims=[0, 1],
                    slice=fe_first_grid[:, 0, :, 0])
        ],
        rtrace_list=[
            RTraceGraph(name='Fi,right over u_right (iteration)',
                        var_y='F_int',
                        idx_y=0,
                        var_x='U_k',
                        idx_x=1),
            RTraceDomainListField(name='Stress',
                                  var='sig_app',
                                  idx=0,
                                  warp=True),
            #                             RTraceDomainField(name = 'Displacement' ,
            #                                        var = 'u', idx = 0),
            #                                 RTraceDomainField(name = 'N0' ,
            #                                              var = 'N_mtx', idx = 0,
            #                                              record_on = 'update')
        ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))

    print tloop.eval()
    from ibvpy.plugins.ibvpy_app import IBVPyApp
    ibvpy_app = IBVPyApp(ibv_resource=tloop)
    ibvpy_app.main()
def combined_fe2D4q_with_fe2D4q8u():

    fets_eval_4u_conc = FETS2D4Q( mats_eval = MATS2DElastic( E = 28500, nu = 0.2 ) )
    fets_eval_4u_steel = FETS2D4Q( mats_eval = MATS2DElastic( E = 210000, nu = 0.25 ) )
    fets_eval_8u = FETS2D4Q8U( mats_eval = MATS2DElastic() )

    # Discretization
    fe_domain = FEDomain()

    fe_grid_level1 = FERefinementGrid( name = 'master grid',
                                       fets_eval = fets_eval_4u_conc,
                                       domain = fe_domain )

    fe_grid = FEGrid( level = fe_grid_level1,
                      coord_max = ( 2., 6., 0. ),
                      shape = ( 11, 30 ),
                      fets_eval = fets_eval_4u_conc )

    fe_grid_level2 = FERefinementGrid( name = 'refinement grid',
                                       parent = fe_grid_level1,
                                       fets_eval = fets_eval_4u_steel,
                                       fine_cell_shape = ( 1, 1 ) )

    # fe_grid_level1[ 5, :5 ].refine_using( fe_grid_level2 )
    # 1. first get the slice for the level - distinguish it from the slice at the subgrid
    #    this includes slicing in the subgrids. what if the subgrid does not exist?
    #    
    #    Each subgrid must hold its own slice within the level. The index operator fills
    #    the grid [...] instanciates the whole grid and returns the instance of 
    #    FEGridLevelSlice. The expanded subgrid contains its constructor slice.
    #
    # 2. If the slice is within an existing slice no change in the FESubgrid is required
    #    only the instance of the slice is returned. The FEGridLevelSlice goes always into 
    #    an expanded part of FEGrid.
    #
    # 3. If the slice does not fit into any existing slice - all domain with an intersection
    #    of the existing slice must be constructed as well. 
    #
    # 2. deactivate elements
    # 3.
    # BUT how to impose the boundary conditions on the particular refinement? The
    # slice has an attribute  

    fe_grid_level2.refine_elem( ( 5, 0 ) )
    fe_grid_level2.refine_elem( ( 5, 1 ) )
    fe_grid_level2.refine_elem( ( 5, 2 ) )
    fe_grid_level2.refine_elem( ( 5, 3 ) )
    fe_grid_level2.refine_elem( ( 5, 4 ) )
    fe_grid_level2.refine_elem( ( 5, 5 ) )

    # apply the boundary condition on a subgrid
    #
    print fe_grid_level2.fe_subgrids
    fe_first_grid = fe_grid_level2.fe_subgrids[0]

    ts = TS( dof_resultants = True,
             sdomain = fe_domain,
             bcond_list = [BCSlice( var = 'f', value = 1., dims = [0],
                                       slice = fe_grid[ :, -1, :, -1 ] ),
                           BCSlice( var = 'u', value = 0., dims = [0, 1],
                                       slice = fe_first_grid[ :, 0, :, 0 ] )
                                       ],
             rtrace_list = [ RTraceGraph( name = 'Fi,right over u_right (iteration)' ,
                                   var_y = 'F_int', idx_y = 0,
                                   var_x = 'U_k', idx_x = 1 ),
                        RTraceDomainListField( name = 'Stress',
                             var = 'sig_app', idx = 0, warp = True ),
#                             RTraceDomainField(name = 'Displacement' ,
#                                        var = 'u', idx = 0),
#                                 RTraceDomainField(name = 'N0' ,
#                                              var = 'N_mtx', idx = 0,
#                                              record_on = 'update')
                    ]
                )

    # Add the time-loop control
    tloop = TLoop( tstepper = ts,
                   tline = TLine( min = 0.0, step = 1, max = 1.0 ) )

    print tloop.eval()
    from ibvpy.plugins.ibvpy_app import IBVPyApp
    ibvpy_app = IBVPyApp( ibv_resource = tloop )
    ibvpy_app.main()