def test__init__02(self, array_type): input_array = array_type(self.test_data) with pytest.raises(ValueError): KrigingClass = KrigingModel(input_array)
def test__init__03(self, array_type): input_array = array_type(self.test_data) with pytest.raises(Exception): KrigingClass = KrigingModel(input_array, numerical_gradients=1)
def test_parity_residual_plots(self, mock_show, array_type): input_array = array_type(self.training_data) KrigingClass = KrigingModel(input_array, regularization=False) results = KrigingClass.training() KrigingClass.parity_residual_plots()
def test__init__01(self, array_type): input_array = array_type(self.test_data) KrigingClass = KrigingModel(input_array) assert KrigingClass.num_grads == True assert KrigingClass.regularization == True
def test_pickle_load01(self, array_type): input_array = array_type(self.training_data) KrigingClass = KrigingModel(input_array, regularization=False) results = KrigingClass.training() KrigingClass.pickle_load(KrigingClass.filename)
def test_pickle_load02(self, array_type): input_array = array_type(self.training_data) KrigingClass = KrigingModel(input_array, regularization=False) with pytest.raises(Exception): KrigingClass.pickle_load('file_not_existing.pickle')
def test__init__07(self, array_type): input_array = array_type(self.test_data) with pytest.raises(Exception): KrigingClass = KrigingModel(input_array, fname=1)
def test_get_feature_vector_02(self, array_type): input_array = array_type(self.training_data) KrigingClass = KrigingModel(input_array, regularization=False) p = KrigingClass.get_feature_vector() expected_dict = {0: 0, 1: 0} assert expected_dict == p.extract_values()
def test_get_feature_vector_02(self): KrigingClass = KrigingModel(self.training_data, regularization=False) p = KrigingClass.get_feature_vector() expected_dict = {0: 0, 1: 0} assert expected_dict == p.extract_values()
def test__init__04(self, array_type): input_array = array_type(self.test_data) with pytest.raises(Exception): KrigingClass = KrigingModel(input_array, regularization=1)
def test_get_feature_vector_01(self): KrigingClass = KrigingModel(self.full_data, regularization=False) p = KrigingClass.get_feature_vector() expected_dict = {'x1': 0, 'x2': 0} assert expected_dict == p.extract_values()
def test__init__05(self): with pytest.raises(Exception): KrigingClass = KrigingModel(self.test_data_numpy, regularization=1)
def test__init__04(self): with pytest.raises(Exception): KrigingClass = KrigingModel(self.test_data_numpy, numerical_gradients=1)
def test__init__03(self): with pytest.raises(ValueError): KrigingClass = KrigingModel(list(self.test_data_numpy))
def test__init__02(self): KrigingClass = KrigingModel(self.test_data_pandas) assert KrigingClass.num_grads == True assert KrigingClass.regularization == True