Esempio n. 1
0
def sans_benchmark(request):
    r"""Sassena output containing 1000 I(Q) profiles for the hiAPP centroids.

    Yields
    ------
    dict
        'profiles' : HDF5 handle to the file containing the I(Q) profiles
        'property_list' : list of SansProperty instances, one for each leaf
        'tree_with_no_property' : cnextend.Tree with random distances among
            leafs and without included properties.
    """

    # setup or initialization
    handle = h5py.File(os.path.join(data_dir, 'sans', 'profiles.h5'), 'r')
    profiles = handle['fqt']
    n_leafs = len(profiles)

    # Create a node tree.
    # m is a 1D compressed matrix of distances between leafs
    m = np.random.random(int(n_leafs * (n_leafs - 1) / 2))
    z = linkage(m)
    tree = cnextend.Tree(z)

    # values is a list of SansProperty instances, one for each tree leaf
    values = list()
    for i in range(tree.nleafs):
        sans_property = idprop.SansProperty()
        sans_property.from_sassena(handle, index=i)
        values.append(sans_property)

    def teardown():
        handle.close()
    request.addfinalizer(teardown)
    return dict(profiles=handle, property_list=values,
                tree_with_no_property=tree)
Esempio n. 2
0
def benchmark():
    z = np.loadtxt(os.path.join(data_dir, 'linkage_matrix'))
    return {'z': z,
            'tree': cnextend.Tree(z),
            'nnodes': 44757,
            'nleafs': 22379,
            'simple_property': [SimpleProperty(i) for i in range(22379)],
            }
Esempio n. 3
0
 def test_from_linkage_matrix(self, benchmark):
     t = cnx.Tree()
     t.from_linkage_matrix(benchmark['z'], node_class=hierarchy.ClusterNode)
     r = t.root
     assert hasattr(r, 'parent') is False
     t.from_linkage_matrix(benchmark['z'], node_class=cnx.ClusterNodeX)
     r = t.root
     assert r.parent is None
     assert len(t) == benchmark['nnodes']
Esempio n. 4
0
def small_tree():
    n_leafs = 9
    a = np.arange(n_leafs)
    dist_mat = squareform(np.square(a - a[:, np.newaxis]))
    z = linkage(dist_mat, method='complete')
    return {'dist_mat': dist_mat,
            'z': z,
            'tree': cnextend.Tree(z),
            'simple_property': [SimpleProperty(i) for i in range(n_leafs)],
            }
Esempio n. 5
0
def benchmark():
    z = np.loadtxt(os.path.join(data_dir, 'linkage_matrix'))
    t = cnextend.Tree(z)
    n_leafs = 22379
    # Instantiate scalar properties for the leaf nodes, then propagate
    # up the tree
    sc = np.random.normal(loc=100.0, size=n_leafs)
    sc_p = [idprop.ScalarProperty(name='sc', y=s) for s in sc]
    idprop.propagator_size_weighted_sum(sc_p, t)
    return {
        'z': z,
        'tree': t,
        'nnodes': 44757,
        'nleafs': n_leafs,
        'simple_property': [SimpleProperty(i) for i in range(22379)],
    }