def test_get_row(): dictionary = {"column 1": [1, 2, 3, 4], "column 2": [5, 6, 7, 8]} df = dataframe(dictionary) answer = df.get_row(0) expected_answer = [1, 5] assert answer == expected_answer
def test_sum_numbers_avoid_nonnumerical(): dictionary = {"column 1": [1, 2, 3, 4], "column 2": ["a", "b", "c", "d"]} df = dataframe(dictionary) answer = df.sum() expected_answer = [10] assert answer == expected_answer
def test_mean_numbers(): dictionary = {"column 1": [1, 2, 3, 4], "column 2": [5, 6, 7, 8]} df = dataframe(dictionary) answer = df.mean() expected_answer = [2.5, 6.5] assert answer == expected_answer
def test_sum_numbers(): dictionary = {"column 1": [1, 2, 3, 4], "column 2": [5, 6, 7, 8]} df = dataframe(dictionary) answer = df.sum() expected_answer = [10, 26] assert answer == expected_answer
def test_var_numbers(): dictionary = {"column 1": [1, 2, 3, 4, 5], "column 2": [5, 6, 7, 8, 9]} df = dataframe(dictionary) answer = df.var() expected_answer = [2, 2] assert answer == expected_answer
def test_range_numbers(): dictionary = {"column 1": [1, 2, 3, 4], "column 2": [5, 6, 7, 8]} df = dataframe(dictionary) answer = df.range() expected_answer = [3, 3] assert answer == expected_answer
def test_set_item(): dictionary = {"c1": [1, 2, 3, 4], "c2": ["a", "b", "c", "d"], "c3": [5.5, 6.5, 7.5, 8.5], "c4": [True, False, True, False]} df = dataframe(dictionary) df['c1'] = [1, 0, 0, 0] answer = df['c1'] expected_answer = np.asarray([1, 0, 0, 0]) assert np.all(answer == expected_answer)
def test_mode_numbers(): dictionary = { "column 1": [1, 2, 3, 4, 3, 5, 2, 3, 4, 5, 1, 2, 2, 2, 2], "column 2": [5, 6, 7, 8, 8, 8, 8, 5, 1, 8, 2, 1, 4, 8] } df = dataframe(dictionary) answer = df.mode() expected_answer = [2, 8] assert answer == expected_answer
def test_std_numbers(): dictionary = {"column 1": [1, 2, 3, 4, 5], "column 2": [5, 6, 7, 8, 9]} df = dataframe(dictionary) list = df.std() answer = [] for i in range(0, len(list)): rounded_number = round(list[i], 2) answer.append(rounded_number) expected_answer = [1.41, 1.41] assert answer == expected_answer
def test_del_item(): dictionary = { "c1": [1, 2, 3, 4], "c2": ["a", "b", "c", "d"], "c3": [5.5, 6.5, 7.5, 8.5], "c4": [True, False, True, False] } df = dataframe(dictionary) del df['c1'] try: df['c1'] except Exception: answer = True expected_answer = True assert answer == expected_answer
from ie_pandas import dataframe test_data = { "column 1": [1, 2, 3, 4, 5], "column 2": [True, False, True, False, False], "column 3": ['t1', 't2', 't3', 't4', 't5'], "column 4": [16, 17, 18, 19, 20] } df = dataframe(test_data) print(df)