Esempio n. 1
0
def test_downsample_segmentation_4x_z():
  case1 = np.array([ [ 0, 1 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # all different
  case2 = np.array([ [ 0, 0 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # two are same
  case3 = np.array([ [ 1, 1 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # two groups are same
  case4 = np.array([ [ 1, 2 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # 3 are the same
  case5 = np.array([ [ 5, 5 ], [ 5, 5 ] ]).reshape((2,2,1,1)) # all are the same

  is_255_handled = np.array([ [ 255, 255 ], [ 1, 2 ] ], dtype=np.uint8).reshape((2,2,1,1))

  test = lambda case: downsample.countless2d(case)[0][0][0][0]

  assert test(case1) == 3 # d
  assert test(case2) == 0 # a==b
  assert test(case3) == 1 # a==b
  assert test(case4) == 2 # b==c
  assert test(case5) == 5 # a==b

  assert test(is_255_handled) == 255 

  assert downsample.countless2d(case1).dtype == case1.dtype

  #  0 0 1 3 
  #  1 1 6 3  => 1 3

  case_odd = np.array([ 
    [
      [ [1] ], 
      [ [0] ] 
    ],
    [
      [ [1] ],
      [ [6] ],
    ],
    [
      [ [3] ],
      [ [3] ],
    ],
  ]) # all are the same

  downsamplefn = downsample.method('segmentation')

  result = downsamplefn(case_odd, (2,2,1))

  assert np.array_equal(result, np.array([
    [
      [ [1] ]
    ],
    [
      [ [3] ]
    ]
  ]))

  data = np.ones(shape=(1024, 511, 62, 1), dtype=int)
  result = downsamplefn(data, (2,2,1))
  assert result.shape == (512, 256, 62, 1)
Esempio n. 2
0
def downsample_and_upload(image,
                          bounds,
                          vol,
                          ds_shape,
                          mip=0,
                          axis='z',
                          skip_first=False):
    ds_shape = min2(vol.volume_size, ds_shape[:3])

    # sometimes we downsample a base layer of 512x512
    # into underlying chunks of 64x64 which permits more scales
    underlying_mip = (mip + 1) if (mip + 1) in vol.available_mips else mip
    underlying_shape = vol.mip_underlying(underlying_mip).astype(np.float32)
    toidx = {'x': 0, 'y': 1, 'z': 2}
    preserved_idx = toidx[axis]
    underlying_shape[preserved_idx] = float('inf')

    # Need to use ds_shape here. Using image bounds means truncated
    # edges won't generate as many mip levels
    fullscales = downsample_scales.compute_plane_downsampling_scales(
        size=ds_shape,
        preserve_axis=axis,
        max_downsampled_size=int(min(*underlying_shape)),
    )
    factors = downsample.scale_series_to_downsample_factors(fullscales)

    if len(factors) == 0:
        print(
            "No factors generated. Image Shape: {}, Downsample Shape: {}, Volume Shape: {}, Bounds: {}"
            .format(image.shape, ds_shape, vol.volume_size, bounds))

    downsamplefn = downsample.method(vol.layer_type)

    vol.mip = mip
    if not skip_first:
        vol[bounds.to_slices()] = image

    new_bounds = bounds.clone()

    for factor3 in factors:
        vol.mip += 1
        image = downsamplefn(image, factor3)
        new_bounds //= factor3
        new_bounds.maxpt = new_bounds.minpt + Vec(*image.shape[:3])
        vol[new_bounds.to_slices()] = image