def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 s = 16 n_classes = 2 offset = n_iters * s y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device) y_preds = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device) def update(engine, i): return ( y_preds[i * s + rank * offset : (i + 1) * s + rank * offset], y_true[i * s + rank * offset : (i + 1) * s + rank * offset], ) engine = Engine(update) ck = CohenKappa(device=metric_device) ck.attach(engine, "ck") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) assert "ck" in engine.state.metrics res = engine.state.metrics["ck"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = cohen_kappa_score(y_true.cpu().numpy(), y_preds.cpu().numpy()) assert pytest.approx(res) == true_res
def test_cohen_kappa_all_weights_with_output_transform(weights): np.random.seed(1) size = 100 np_y_pred = np.random.randint(0, 2, size=(size, 1), dtype=np.long) np_y = np.zeros((size, ), dtype=np.long) np_y[size // 2:] = 1 np.random.shuffle(np_y) ck_value_sk = cohen_kappa_score(np_y, np_y_pred) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx:idx + batch_size] y_pred_batch = np_y_pred[idx:idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy( y_true_batch) engine = Engine(update_fn) ck_metric = CohenKappa(output_transform=lambda x: (x[1], x[2]), weights=weights) ck_metric.attach(engine, "cohen_kappa") data = list(range(size // batch_size)) ck_value = engine.run(data, max_epochs=1).metrics["cohen_kappa"] assert ck_value == pytest.approx(ck_value_sk)
def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) ck_metric = CohenKappa(output_transform=lambda x: (x[1], x[2]), weights=weights) ck_metric.attach(engine, "ck") np_y = y.numpy() np_y_pred = y_pred.numpy() np_ck = cohen_kappa_score(np_y, np_y_pred, weights=weights) data = list(range(y_pred.shape[0] // batch_size)) ck = engine.run(data, max_epochs=1).metrics["ck"] assert isinstance(ck, float) assert np_ck == pytest.approx(ck)