Esempio n. 1
0
    def _test(n_epochs, metric_device):
        metric_device = torch.device(metric_device)
        n_iters = 80
        s = 16
        n_classes = 2

        offset = n_iters * s
        y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device)
        y_preds = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device)

        def update(engine, i):
            return (
                y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
                y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
            )

        engine = Engine(update)

        ck = CohenKappa(device=metric_device)
        ck.attach(engine, "ck")

        data = list(range(n_iters))
        engine.run(data=data, max_epochs=n_epochs)

        assert "ck" in engine.state.metrics

        res = engine.state.metrics["ck"]
        if isinstance(res, torch.Tensor):
            res = res.cpu().numpy()

        true_res = cohen_kappa_score(y_true.cpu().numpy(), y_preds.cpu().numpy())

        assert pytest.approx(res) == true_res
def test_cohen_kappa_all_weights_with_output_transform(weights):
    np.random.seed(1)
    size = 100
    np_y_pred = np.random.randint(0, 2, size=(size, 1), dtype=np.long)
    np_y = np.zeros((size, ), dtype=np.long)
    np_y[size // 2:] = 1
    np.random.shuffle(np_y)

    ck_value_sk = cohen_kappa_score(np_y, np_y_pred)

    batch_size = 10

    def update_fn(engine, batch):
        idx = (engine.state.iteration - 1) * batch_size
        y_true_batch = np_y[idx:idx + batch_size]
        y_pred_batch = np_y_pred[idx:idx + batch_size]
        return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(
            y_true_batch)

    engine = Engine(update_fn)

    ck_metric = CohenKappa(output_transform=lambda x: (x[1], x[2]),
                           weights=weights)
    ck_metric.attach(engine, "cohen_kappa")

    data = list(range(size // batch_size))
    ck_value = engine.run(data, max_epochs=1).metrics["cohen_kappa"]

    assert ck_value == pytest.approx(ck_value_sk)
Esempio n. 3
0
    def _test(y_pred, y, batch_size):
        def update_fn(engine, batch):
            idx = (engine.state.iteration - 1) * batch_size
            y_true_batch = np_y[idx : idx + batch_size]
            y_pred_batch = np_y_pred[idx : idx + batch_size]
            return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)

        engine = Engine(update_fn)

        ck_metric = CohenKappa(output_transform=lambda x: (x[1], x[2]), weights=weights)
        ck_metric.attach(engine, "ck")

        np_y = y.numpy()
        np_y_pred = y_pred.numpy()

        np_ck = cohen_kappa_score(np_y, np_y_pred, weights=weights)

        data = list(range(y_pred.shape[0] // batch_size))
        ck = engine.run(data, max_epochs=1).metrics["ck"]

        assert isinstance(ck, float)
        assert np_ck == pytest.approx(ck)