Esempio n. 1
0
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
    cuda = torch.cuda.is_available()
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)

    model = Net()
    if cuda:
        model = model.cuda()
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    trainer = create_supervised_trainer(model, optimizer, F.nll_loss, cuda=cuda)
    evaluator = create_supervised_evaluator(model,
                                            metrics={'accuracy': CategoricalAccuracy(),
                                                     'nll': Loss(F.nll_loss)},
                                            cuda=cuda)

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(engine):
        iter = (engine.state.iteration - 1) % len(train_loader) + 1
        if iter % log_interval == 0:
            print("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
                  "".format(engine.state.epoch, iter, len(train_loader), engine.state.output))

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        print("Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
              .format(engine.state.epoch, avg_accuracy, avg_nll))

    trainer.run(train_loader, max_epochs=epochs)
Esempio n. 2
0
def run(mode, noise_fraction, train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir):

    seed = 12345
    random.seed(seed)
    torch.manual_seed(seed)

    now = datetime.now()
    log_dir = os.path.join(log_dir, "train_{}_{}__{}".format(mode, noise_fraction, now.strftime("%Y%m%d_%H%M")))
    os.makedirs(log_dir)

    cuda = torch.cuda.is_available()
    train_loader, val_loader = get_data_loaders(noise_fraction, train_batch_size, val_batch_size)

    model = Net()

    writer = create_summary_writer(log_dir)
    if cuda:
        model = model.cuda()
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)

    if mode == 'xentropy':
        criterion = nn.CrossEntropyLoss()
    elif mode == 'soft_bootstrap':
        criterion = SoftBootstrappingLoss(beta=0.95)
    elif mode == 'hard_bootstrap':
        criterion = HardBootstrappingLoss(beta=0.8)
    else:
        raise TypeError("Wrong mode {}, expected: xentropy, soft_bootstrap or hard_bootstrap".format(mode))

    trainer = create_supervised_trainer(model, optimizer, criterion, cuda=cuda)
    evaluator = create_supervised_evaluator(model,
                                            metrics={'accuracy': CategoricalAccuracy(),
                                                     'nll': Loss(nn.CrossEntropyLoss())},
                                            cuda=cuda)

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(engine):
        iter = (engine.state.iteration - 1) % len(train_loader) + 1
        if iter % log_interval == 0:
            print("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
                  "".format(engine.state.epoch, iter, len(train_loader), engine.state.output))
            writer.add_scalar("training/loss", engine.state.output, engine.state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        print("Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
              .format(engine.state.epoch, avg_accuracy, avg_nll))
        writer.add_scalar("valdation/loss", avg_nll, engine.state.epoch)
        writer.add_scalar("valdation/accuracy", avg_accuracy, engine.state.epoch)

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)

    writer.close()
Esempio n. 3
0
def test_create_supervised_trainer():
    model = Linear(1, 1)
    model.weight.data.zero_()
    model.bias.data.zero_()
    optimizer = SGD(model.parameters(), 0.1)
    trainer = create_supervised_trainer(model, optimizer, mse_loss)

    x = torch.FloatTensor([[1.0], [2.0]])
    y = torch.FloatTensor([[3.0], [5.0]])
    data = [(x, y)]

    assert model.weight.data[0, 0] == approx(0.0)
    assert model.bias.data[0] == approx(0.0)

    state = trainer.run(data)

    assert state.output == approx(17.0)
    assert model.weight.data[0, 0] == approx(1.3)
    assert model.bias.data[0] == approx(0.8)
Esempio n. 4
0
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir):
    cuda = torch.cuda.is_available()
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)

    model = Net()
    writer = create_summary_writer(model, log_dir)
    if cuda:
        model = model.cuda()
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    trainer = create_supervised_trainer(model, optimizer, F.nll_loss, cuda=cuda)
    evaluator = create_supervised_evaluator(model,
                                            metrics={'accuracy': CategoricalAccuracy(),
                                                     'nll': Loss(F.nll_loss)},
                                            cuda=cuda)

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(trainer, state):
        iter = (state.iteration - 1) % len(train_loader) + 1
        if iter % log_interval == 0:
            print("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}".format(state.epoch, iter, len(train_loader), state.output))
            writer.add_scalar("training/loss", state.output, state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(trainer, state):
        metrics = evaluator.run(val_loader).metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        print("Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
              .format(state.epoch, avg_accuracy, avg_nll))
        writer.add_scalar("valdation/loss", avg_nll, state.epoch)
        writer.add_scalar("valdation/accuracy", avg_accuracy, state.epoch)

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)

    writer.close()
Esempio n. 5
0
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
    vis = visdom.Visdom()
    if not vis.check_connection():
        raise RuntimeError(
            "Visdom server not running. Please run python -m visdom.server")

    cuda = torch.cuda.is_available()
    train_loader, val_loader = get_data_loaders(train_batch_size,
                                                val_batch_size)

    model = Net()
    if cuda:
        model = model.cuda()
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    trainer = create_supervised_trainer(model,
                                        optimizer,
                                        F.nll_loss,
                                        cuda=cuda)
    evaluator = create_supervised_evaluator(model,
                                            metrics={
                                                'accuracy':
                                                CategoricalAccuracy(),
                                                'nll': Loss(F.nll_loss)
                                            },
                                            cuda=cuda)

    train_loss_window = create_plot_window(vis, '#Iterations', 'Loss',
                                           'Training Loss')
    val_accuracy_window = create_plot_window(vis, '#Epochs', 'Accuracy',
                                             'Validation Accuracy')
    val_loss_window = create_plot_window(vis, '#Epochs', 'Loss',
                                         'Validation Loss')

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(trainer, state):
        iter = (state.iteration - 1) % len(train_loader) + 1
        if iter % log_interval == 0:
            print("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}".format(
                state.epoch, iter, len(train_loader), state.output))
            vis.line(X=np.array([state.iteration]),
                     Y=np.array([state.output]),
                     update='append',
                     win=train_loss_window)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(trainer, state):
        metrics = evaluator.run(val_loader).metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        print(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
            .format(state.epoch, avg_accuracy, avg_nll))
        vis.line(X=np.array([state.epoch]),
                 Y=np.array([avg_accuracy]),
                 win=val_accuracy_window,
                 update='append')
        vis.line(X=np.array([state.epoch]),
                 Y=np.array([avg_nll]),
                 win=val_loss_window,
                 update='append')

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)
Esempio n. 6
0
def run(opt):
    if opt.log_file is not None:
        logging.basicConfig(filename=opt.log_file, level=logging.INFO)
    else:
        logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger()
    # logger.addHandler(logging.StreamHandler())
    logger = logger.info

    writer = SummaryWriter(log_dir=opt.log_dir)

    model_timer, data_timer = Timer(average=True), Timer(average=True)

    # Training variables
    logger('Loading models')
    model, parameters, mean, std = generate_model(opt)
    optimizer = SGD(parameters,
                    lr=opt.lr,
                    momentum=opt.momentum,
                    weight_decay=opt.weight_decay,
                    nesterov=opt.nesterov)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
                                               'min',
                                               patience=opt.lr_patience)

    # Loading checkpoint
    if opt.checkpoint:
        logger('loading checkpoint {}'.format(opt.checkpoint))
        checkpoint = torch.load(opt.checkpoint)

        opt.begin_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])

    logger('Loading dataset')
    train_transform = get_transform(mean, std, opt.face_size, mode='training')
    train_data = get_training_set(opt, transform=train_transform)
    train_loader = DataLoader(train_data,
                              batch_size=opt.batch_size,
                              shuffle=True,
                              num_workers=opt.n_threads,
                              pin_memory=True)

    val_transform = get_transform(mean, std, opt.face_size, mode='validation')
    val_data = get_validation_set(opt, transform=val_transform)
    val_loader = DataLoader(val_data,
                            batch_size=opt.batch_size,
                            shuffle=False,
                            num_workers=opt.n_threads,
                            pin_memory=True)

    trainer = create_supervised_trainer(model,
                                        optimizer,
                                        nn.L1Loss().cuda(),
                                        cuda=True)
    evaluator = create_supervised_evaluator(model,
                                            metrics={
                                                'distance':
                                                MeanPairwiseDistance(),
                                                'loss': MeanAbsoluteError()
                                            },
                                            cuda=True)

    # Training timer handlers
    model_timer.attach(trainer,
                       start=Events.EPOCH_STARTED,
                       resume=Events.ITERATION_STARTED,
                       pause=Events.ITERATION_COMPLETED,
                       step=Events.ITERATION_COMPLETED)
    data_timer.attach(trainer,
                      start=Events.EPOCH_STARTED,
                      resume=Events.ITERATION_COMPLETED,
                      pause=Events.ITERATION_STARTED,
                      step=Events.ITERATION_STARTED)

    # Training log/plot handlers
    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(engine):
        iter = (engine.state.iteration - 1) % len(train_loader) + 1
        if iter % opt.log_interval == 0:
            logger(
                "Epoch[{}] Iteration[{}/{}] Loss: {:.2f} Model Process: {:.3f}s/batch "
                "Data Preparation: {:.3f}s/batch".format(
                    engine.state.epoch,
                    iter, len(train_loader), engine.state.output,
                    model_timer.value(), data_timer.value()))
            writer.add_scalar("training/loss", engine.state.output,
                              engine.state.iteration)

    # Log/Plot Learning rate
    @trainer.on(Events.EPOCH_STARTED)
    def log_learning_rate(engine):
        lr = optimizer.param_groups[0]['lr']
        logger('Epoch[{}] Starts with lr={}'.format(engine.state.epoch, lr))
        writer.add_scalar("learning_rate", lr, engine.state.epoch)

    # Checkpointing
    @trainer.on(Events.EPOCH_COMPLETED)
    def save_checkpoint(engine):
        if engine.state.epoch % opt.save_interval == 0:
            save_file_path = os.path.join(
                opt.result_path, 'save_{}.pth'.format(engine.state.epoch))
            states = {
                'epoch': engine.state.epoch,
                'arch': opt.model,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
            }
            torch.save(states, save_file_path)

    # val_evaluator event handlers
    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        # metric_values = [metrics[m] for m in val_metrics]
        logger("Validation Results - Epoch: {} ".format(engine.state.epoch) +
               ' '.join(
                   ['{}: {:.4f}'.format(m, val)
                    for m, val in metrics.items()]))
        for m, val in metrics.items():
            writer.add_scalar('validation/{}'.format(m), val,
                              engine.state.epoch)

        #
        if engine.state.epoch == 1:
            optimizer.param_groups[0]['lr'] = 1e-4

        # Update Learning Rate
        scheduler.step(metrics['loss'])

    # kick everything off
    logger('Start training')
    trainer.run(train_loader, max_epochs=opt.n_epochs)

    writer.close()