Esempio n. 1
0
    def store_processed_inputs(self, igr_storage,
                               mastername,
                               image_list,
                               shifted_image_list):

        from igrins.libs.storage_descriptions import (COMBINED_IMAGE_DESC,
                                               WVLCOR_IMAGE_DESC,
                                               )
        from igrins.libs.products import PipelineImages #Base

        r = PipelineProducts("1d specs")

        r.add(COMBINED_IMAGE_DESC, PipelineImages(image_list))

        igr_storage.store(r,
                          mastername=mastername,
                          masterhdu=None,
                          basename_postfix=self.basename_postfix)


        r = PipelineProducts("1d specs")

        r.add(WVLCOR_IMAGE_DESC, PipelineImages(shifted_image_list))

        igr_storage.store(r,
                          mastername=mastername,
                          masterhdu=None,
                          basename_postfix=self.basename_postfix)
Esempio n. 2
0
    def store_profile(self, mastername,
                      orders, slit_profile_list,
                      profile_x, profile_y):
        ## save profile
        igr_storage = self.igr_storage
        r = PipelineProducts("slit profile for point source")
        from igrins.libs.storage_descriptions import SLIT_PROFILE_JSON_DESC
        from igrins.libs.products import PipelineDict
        slit_profile_dict = PipelineDict(orders=orders,
                                         slit_profile_list=slit_profile_list,
                                         profile_x=profile_x,
                                         profile_y=profile_y)
        r.add(SLIT_PROFILE_JSON_DESC, slit_profile_dict)

        igr_storage.store(r,
                          mastername=mastername,
                          masterhdu=None,
                          basename_postfix=self.basename_postfix)
Esempio n. 3
0
    def store_a0v_results(self, igr_storage, extractor,
                          mastername,
                          a0v_flattened_data):

        wvl_header, wvl_data, convert_data = \
                    self.get_wvl_header_data(igr_storage,
                                             extractor)


        from igrins.libs.load_fits import open_fits
        f_obj = open_fits(extractor.obj_filenames[0])
        f_obj[0].header.extend(wvl_header)

        from igrins.libs.products import PipelineImage as Image
        image_list = [Image([("EXTNAME", "SPEC_FLATTENED")],
                            convert_data(a0v_flattened_data[0][1]))]

        for ext_name, data in a0v_flattened_data[1:]:
            image_list.append(Image([("EXTNAME", ext_name.upper())],
                                    convert_data(data)))


        from igrins.libs.products import PipelineImages #Base
        from igrins.libs.storage_descriptions import SPEC_FITS_FLATTENED_DESC

        r = PipelineProducts("flattened 1d specs")
        r.add(SPEC_FITS_FLATTENED_DESC, PipelineImages(image_list))

        # mastername = extractor.obj_filenames[0]

        igr_storage.store(r,
                          mastername=mastername,
                          masterhdu=f_obj[0],
                          basename_postfix=self.basename_postfix)

        tgt_basename = extractor.pr.tgt_basename
        extractor.db["a0v"].update(extractor.band, tgt_basename)
Esempio n. 4
0
    def store_wavelength_outputs(self, extractor, p2_list, ap):

        orders = extractor.orders_w_solutions
        wvl_solutions = extractor.wvl_solutions

        p2_dict = dict(zip(orders, p2_list))

        # save order_map, etc

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()
        order_map2 = ap.make_order_map(mask_top_bottom=True)

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)

        wavelength_map = np.empty_like(slitpos_map)
        wavelength_map.fill(np.nan)

        from scipy.interpolate import interp1d
        for o, wvl in zip(ap.orders, wvl_solutions):
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o

            xl_msk = xl[msk]
            slitoffset_map_msk = p2_dict[o](xl_msk, slitpos_map[msk])
            slitoffset_map[msk] = slitoffset_map_msk

            wvl_interp1d = interp1d(xi, wvl, bounds_error=False)
            wavelength_map[msk] = wvl_interp1d(xl_msk - slitoffset_map_msk)

        from igrins.libs.storage_descriptions import (
            ORDERMAP_FITS_DESC, SLITPOSMAP_FITS_DESC, SLITOFFSET_FITS_DESC,
            WAVELENGTHMAP_FITS_DESC, ORDERMAP_MASKED_FITS_DESC)
        from igrins.libs.products import PipelineImageBase, PipelineProducts
        products = PipelineProducts("Distortion map")

        for desc, im in [(ORDERMAP_FITS_DESC, order_map),
                         (SLITPOSMAP_FITS_DESC, slitpos_map),
                         (SLITOFFSET_FITS_DESC, slitoffset_map),
                         (WAVELENGTHMAP_FITS_DESC, wavelength_map),
                         (ORDERMAP_MASKED_FITS_DESC, order_map2)]:
            products.add(desc, PipelineImageBase([], im))

        igr_storage = extractor.igr_storage
        igr_storage.store(products,
                          mastername=extractor.obj_filenames[0],
                          masterhdu=None)

        if 0:
            # test
            x = np.arange(2048, dtype="d")
            oi = 10
            o = orders[oi]

            yi = 0.5 * (slit_slice[:-1] + slit_slice[1:])

            ax1 = subplot(211)
            s1 = s_up[-1][oi]
            s2 = s_down[-1][oi]

            ax1.plot(x, s1)
            ax1.plot(x, s2)

            ax2 = subplot(212, sharex=ax1, sharey=ax1)
            dx1 = p2_dict[o](x, yi[-1] + np.zeros_like(x))
            ax2.plot(x - dx1, s1)

            dx2 = p2_dict[o](x, yi[0] + np.zeros_like(x))
            ax2.plot(x - dx2, s2)
Esempio n. 5
0
    def save_wavelength_sol(self, extractor, orders_w_solutions, wvl_sol, p):

        oh_sol_products = PipelineProducts(
            "Wavelength solution based on ohlines")
        #from igrins.libs.process_thar import ONED_SPEC_JSON
        from igrins.libs.products import PipelineDict
        from igrins.libs.storage_descriptions import SKY_WVLSOL_JSON_DESC
        oh_sol_products.add(
            SKY_WVLSOL_JSON_DESC,
            PipelineDict(orders=orders_w_solutions, wvl_sol=wvl_sol))

        if 1:  # save as WAT fits header
            xx = np.arange(0, 2048)
            xx_plus1 = np.arange(1, 2048 + 1)

            from astropy.modeling import models, fitting

            # We convert 2d chebyshev solution to a seriese of 1d
            # chebyshev.  For now, use naive (and inefficient)
            # approach of refitting the solution with 1d. Should be
            # reimplemented.

            p1d_list = []
            for o in orders_w_solutions:
                oo = np.empty_like(xx)
                oo.fill(o)
                wvl = p(xx, oo) / o * 1.e4  # um to angstrom

                p_init1d = models.Chebyshev1D(domain=[1, 2048],
                                              degree=p.x_degree)
                fit_p1d = fitting.LinearLSQFitter()
                p1d = fit_p1d(p_init1d, xx_plus1, wvl)
                p1d_list.append(p1d)

        from igrins.libs.iraf_helper import get_wat_spec, default_header_str
        wat_list = get_wat_spec(orders_w_solutions, p1d_list)

        # cards = [pyfits.Card.fromstring(l.strip()) \
        #          for l in open("echell_2dspec.header")]
        import astropy.io.fits as pyfits
        cards = [pyfits.Card.fromstring(l.strip()) \
                 for l in default_header_str]

        wat = "wtype=multispec " + " ".join(wat_list)
        char_per_line = 68
        num_line, remainder = divmod(len(wat), char_per_line)
        for i in range(num_line):
            k = "WAT2_%03d" % (i + 1, )
            v = wat[char_per_line * i:char_per_line * (i + 1)]
            #print k, v
            c = pyfits.Card(k, v)
            cards.append(c)
        if remainder > 0:
            i = num_line
            k = "WAT2_%03d" % (i + 1, )
            v = wat[char_per_line * i:]
            #print k, v
            c = pyfits.Card(k, v)
            cards.append(c)

        if 1:
            # save fits with empty header

            header = pyfits.Header(cards)
            hdu = pyfits.PrimaryHDU(header=header,
                                    data=np.array([]).reshape((0, 0)))

            from igrins.libs.storage_descriptions import SKY_WVLSOL_FITS_DESC
            from igrins.libs.products import PipelineImageBase
            oh_sol_products.add(SKY_WVLSOL_FITS_DESC,
                                PipelineImageBase([], np.array(wvl_sol)))

            igr_storage = extractor.igr_storage
            sky_filenames = extractor.obj_filenames

            igr_storage.store(oh_sol_products,
                              mastername=sky_filenames[0],
                              masterhdu=hdu)

            #fn = sky_path.get_secondary_path("wvlsol_v1.fits")
            #hdu.writeto(fn, clobber=True)

        if 0:
            # plot all spectra
            for w, s in zip(wvl_sol, s_list):
                plot(w, s)
Esempio n. 6
0
    def get_sky_spectra(self, extractor, ap, band, master_obsid):
        from igrins.libs.process_thar import get_1d_median_specs
        sky_filenames = extractor.obj_filenames
        raw_spec_product = get_1d_median_specs(sky_filenames, ap)

        # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0]
        # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_)

        # import astropy.io.fits as pyfits
        # masterhdu = pyfits.open(sky_filenames[0])[0]
        from igrins.libs.load_fits import load_fits_data
        masterhdu = load_fits_data(sky_filenames[0])

        igr_storage = extractor.igr_storage
        igr_storage.store(raw_spec_product,
                          mastername=sky_filenames[0],
                          masterhdu=masterhdu)

        # fn = sky_path.get_secondary_path("raw_spec")
        # raw_spec_product.save(fn,
        #                       masterhdu=masterhdu)

        # initial wavelength solution

        # this need to be fixed
        # thar_db.query(sky_master_obsid)
        # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band,
        #                                                      igrins_log.date)

        #from igrins.libs.storage_descriptions import THAR_WVLSOL_JSON_DESC
        from igrins.libs.storage_descriptions import WVLSOL_V0_JSON_DESC
        thar_basename = extractor.db["thar"].query(band, master_obsid)
        thar_wvl_sol = igr_storage.load([WVLSOL_V0_JSON_DESC],
                                        thar_basename)[WVLSOL_V0_JSON_DESC]
        #print thar_wvl_sol.keys()
        #["wvl_sol"]

        #json_name = thar_path.get_secondary_path("wvlsol_v0")
        #json_name = igr_path.get_secondary_calib_filename(json_name_)
        #thar_wvl_sol = PipelineProducts.load(json_name)

        if 0:  # it would be better to iteratively refit the solution
            fn = sky_path.get_secondary_path("wvlsol_v1")
            p = PipelineProducts.load(fn)
            wvl_solutionv = p["wvl_sol"]

        orders_w_solutions_ = thar_wvl_sol["orders"]
        from igrins.libs.storage_descriptions import ONED_SPEC_JSON_DESC
        orders_w_solutions = [
            o for o in orders_w_solutions_
            if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"]
        ]

        _ = dict(
            zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"],
                raw_spec_product[ONED_SPEC_JSON_DESC]["specs"]))
        s_list = [_[o] for o in orders_w_solutions]

        wvl_solutions = thar_wvl_sol["wvl_sol"]

        return orders_w_solutions, wvl_solutions, s_list
Esempio n. 7
0
    def store_wavelength_outputs(self, extractor, p2_list, ap):

        orders = extractor.orders_w_solutions
        wvl_solutions = extractor.wvl_solutions

        p2_dict = dict(zip(orders, p2_list))


        # save order_map, etc

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()
        order_map2 = ap.make_order_map(mask_top_bottom=True)

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)

        wavelength_map = np.empty_like(slitpos_map)
        wavelength_map.fill(np.nan)

        from scipy.interpolate import interp1d
        for o, wvl in zip(ap.orders, wvl_solutions):
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o

            xl_msk = xl[msk]
            slitoffset_map_msk = p2_dict[o](xl_msk, slitpos_map[msk])
            slitoffset_map[msk] = slitoffset_map_msk

            wvl_interp1d = interp1d(xi, wvl, bounds_error=False)
            wavelength_map[msk] = wvl_interp1d(xl_msk - slitoffset_map_msk)


        from igrins.libs.storage_descriptions import (ORDERMAP_FITS_DESC,
                                               SLITPOSMAP_FITS_DESC,
                                               SLITOFFSET_FITS_DESC,
                                               WAVELENGTHMAP_FITS_DESC,
                                               ORDERMAP_MASKED_FITS_DESC)
        from igrins.libs.products import PipelineImageBase, PipelineProducts
        products = PipelineProducts("Distortion map")

        for desc, im in [(ORDERMAP_FITS_DESC, order_map),
                         (SLITPOSMAP_FITS_DESC, slitpos_map),
                         (SLITOFFSET_FITS_DESC, slitoffset_map),
                         (WAVELENGTHMAP_FITS_DESC,wavelength_map),
                         (ORDERMAP_MASKED_FITS_DESC, order_map2)]:
            products.add(desc,
                         PipelineImageBase([], im))

        igr_storage = extractor.igr_storage
        igr_storage.store(products,
                          mastername=extractor.obj_filenames[0],
                          masterhdu=None)



        if 0:
            # test
            x = np.arange(2048, dtype="d")
            oi = 10
            o = orders[oi]

            yi = 0.5*(slit_slice[:-1] + slit_slice[1:])

            ax1 = subplot(211)
            s1 = s_up[-1][oi]
            s2 = s_down[-1][oi]

            ax1.plot(x, s1)
            ax1.plot(x, s2)

            ax2 = subplot(212, sharex=ax1, sharey=ax1)
            dx1 = p2_dict[o](x, yi[-1]+np.zeros_like(x))
            ax2.plot(x-dx1, s1)

            dx2 = p2_dict[o](x, yi[0]+np.zeros_like(x))
            ax2.plot(x-dx2, s2)
Esempio n. 8
0
    def save_wavelength_sol(self, extractor,
                            orders_w_solutions, wvl_sol, p):

        oh_sol_products = PipelineProducts("Wavelength solution based on ohlines")
        #from igrins.libs.process_thar import ONED_SPEC_JSON
        from igrins.libs.products import PipelineDict
        from igrins.libs.storage_descriptions import SKY_WVLSOL_JSON_DESC
        oh_sol_products.add(SKY_WVLSOL_JSON_DESC,
                            PipelineDict(orders=orders_w_solutions,
                                         wvl_sol=wvl_sol))

        if 1: # save as WAT fits header
            xx = np.arange(0, 2048)
            xx_plus1 = np.arange(1, 2048+1)

            from astropy.modeling import models, fitting

            # We convert 2d chebyshev solution to a seriese of 1d
            # chebyshev.  For now, use naive (and inefficient)
            # approach of refitting the solution with 1d. Should be
            # reimplemented.

            p1d_list = []
            for o in orders_w_solutions:
                oo = np.empty_like(xx)
                oo.fill(o)
                wvl = p(xx, oo) / o * 1.e4 # um to angstrom

                p_init1d = models.Chebyshev1D(domain=[1, 2048],
                                              degree=p.x_degree)
                fit_p1d = fitting.LinearLSQFitter()
                p1d = fit_p1d(p_init1d, xx_plus1, wvl)
                p1d_list.append(p1d)

        from igrins.libs.iraf_helper import get_wat_spec, default_header_str
        wat_list = get_wat_spec(orders_w_solutions, p1d_list)

        # cards = [pyfits.Card.fromstring(l.strip()) \
        #          for l in open("echell_2dspec.header")]
        import astropy.io.fits as pyfits
        cards = [pyfits.Card.fromstring(l.strip()) \
                 for l in default_header_str]

        wat = "wtype=multispec " + " ".join(wat_list)
        char_per_line = 68
        num_line, remainder = divmod(len(wat), char_per_line)
        for i in range(num_line):
            k = "WAT2_%03d" % (i+1,)
            v = wat[char_per_line*i:char_per_line*(i+1)]
            #print k, v
            c = pyfits.Card(k, v)
            cards.append(c)
        if remainder > 0:
            i = num_line
            k = "WAT2_%03d" % (i+1,)
            v = wat[char_per_line*i:]
            #print k, v
            c = pyfits.Card(k, v)
            cards.append(c)

        if 1:
            # save fits with empty header

            header = pyfits.Header(cards)
            hdu = pyfits.PrimaryHDU(header=header,
                                    data=np.array([]).reshape((0,0)))

            from igrins.libs.storage_descriptions import SKY_WVLSOL_FITS_DESC
            from igrins.libs.products import PipelineImageBase
            oh_sol_products.add(SKY_WVLSOL_FITS_DESC,
                                PipelineImageBase([],
                                              np.array(wvl_sol)))

            igr_storage = extractor.igr_storage
            sky_filenames = extractor.obj_filenames

            igr_storage.store(oh_sol_products,
                              mastername=sky_filenames[0],
                              masterhdu=hdu)

            #fn = sky_path.get_secondary_path("wvlsol_v1.fits")
            #hdu.writeto(fn, clobber=True)

        if 0:
            # plot all spectra
            for w, s in zip(wvl_sol, s_list):
                plot(w, s)
Esempio n. 9
0
    def get_sky_spectra(self, extractor, ap, band, master_obsid):
        from igrins.libs.process_thar import get_1d_median_specs
        sky_filenames = extractor.obj_filenames
        raw_spec_product = get_1d_median_specs(sky_filenames, ap)


        # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0]
        # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_)

        # import astropy.io.fits as pyfits
        # masterhdu = pyfits.open(sky_filenames[0])[0]
        from igrins.libs.load_fits import load_fits_data
        masterhdu = load_fits_data(sky_filenames[0])

        igr_storage = extractor.igr_storage
        igr_storage.store(raw_spec_product,
                          mastername=sky_filenames[0],
                          masterhdu=masterhdu)

        # fn = sky_path.get_secondary_path("raw_spec")
        # raw_spec_product.save(fn,
        #                       masterhdu=masterhdu)




        # initial wavelength solution

        # this need to be fixed
        # thar_db.query(sky_master_obsid)
        # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band,
        #                                                      igrins_log.date)

        #from igrins.libs.storage_descriptions import THAR_WVLSOL_JSON_DESC
        from igrins.libs.storage_descriptions import WVLSOL_V0_JSON_DESC
        thar_basename = extractor.db["thar"].query(band, master_obsid)
        thar_wvl_sol = igr_storage.load([WVLSOL_V0_JSON_DESC],
                                        thar_basename)[WVLSOL_V0_JSON_DESC]
        #print thar_wvl_sol.keys()
        #["wvl_sol"]

        #json_name = thar_path.get_secondary_path("wvlsol_v0")
        #json_name = igr_path.get_secondary_calib_filename(json_name_)
        #thar_wvl_sol = PipelineProducts.load(json_name)


        if 0: # it would be better to iteratively refit the solution
            fn = sky_path.get_secondary_path("wvlsol_v1")
            p = PipelineProducts.load(fn)
            wvl_solutionv = p["wvl_sol"]

        orders_w_solutions_ = thar_wvl_sol["orders"]
        from igrins.libs.storage_descriptions import ONED_SPEC_JSON_DESC
        orders_w_solutions = [o for o in orders_w_solutions_ if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"]]

        _ = dict(zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"],
                     raw_spec_product[ONED_SPEC_JSON_DESC]["specs"]))
        s_list = [_[o]for o in orders_w_solutions]

        wvl_solutions = thar_wvl_sol["wvl_sol"]

        return orders_w_solutions, wvl_solutions, s_list
Esempio n. 10
0
def save_figures(helper, band, obsids, thar_products, new_orders):
    thar_filenames = helper.get_filenames(band, obsids)
    thar_basename = os.path.splitext(os.path.basename(thar_filenames[0]))[0]
    thar_master_obsid = obsids[0]

    if 1:  # make amp and order falt

        ap = get_simple_aperture(helper,
                                 band,
                                 thar_master_obsid,
                                 orders=new_orders)

        from igrins.libs.storage_descriptions import ONED_SPEC_JSON_DESC

        orders = thar_products[ONED_SPEC_JSON_DESC]["orders"]
        order_map = ap.make_order_map()
        #slitpos_map = ap.make_slitpos_map()

        # load flat on products
        #flat_on_params_name = flaton_path.get_secondary_path("flat_on_params")

        #flaton_products = PipelineProducts.load(flat_on_params_name)
        from igrins.libs.storage_descriptions import (FLAT_NORMED_DESC,
                                                      FLAT_MASK_DESC)

        flaton_db_name = helper.igr_path.get_section_filename_base(
            "PRIMARY_CALIB_PATH",
            "flat_on.db",
        )
        flaton_db = ProductDB(flaton_db_name)

        flaton_basename = flaton_db.query(band, thar_master_obsid)

        flaton_products = helper.igr_storage.load(
            [FLAT_NORMED_DESC, FLAT_MASK_DESC], flaton_basename)

        from igrins.libs.process_flat import make_order_flat, check_order_flat
        order_flat_products = make_order_flat(flaton_products, orders,
                                              order_map)

        #fn = thar_path.get_secondary_path("orderflat")
        #order_flat_products.save(fn, masterhdu=hdu)

        hdu = pyfits.open(thar_filenames[0])[0]
        helper.igr_storage.store(order_flat_products,
                                 mastername=flaton_basename,
                                 masterhdu=hdu)

        flat_mask = helper.igr_storage.load1(FLAT_MASK_DESC, flaton_basename)
        order_map2 = ap.make_order_map(mask_top_bottom=True)
        bias_mask = flat_mask.data & (order_map2 > 0)

        pp = PipelineProducts("")
        from igrins.libs.storage_descriptions import BIAS_MASK_DESC
        pp.add(BIAS_MASK_DESC, PipelineImageBase([], bias_mask))

        helper.igr_storage.store(pp, mastername=flaton_basename, masterhdu=hdu)

    if 1:
        fig_list = check_order_flat(order_flat_products)

        from igrins.libs.qa_helper import figlist_to_pngs
        orderflat_figs = helper.igr_path.get_section_filename_base(
            "QA_PATH", "orderflat", "orderflat_" + thar_basename)
        figlist_to_pngs(orderflat_figs, fig_list)
Esempio n. 11
0
def process_distortion_sky_band(utdate, refdate, band, obsids, config):

    from igrins.libs.products import ProductDB, PipelineStorage

    igr_path = IGRINSPath(config, utdate)

    igr_storage = PipelineStorage(igr_path)

    sky_filenames = igr_path.get_filenames(band, obsids)


    sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0]

    master_obsid = obsids[0]


    flaton_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH",
                                                        "flat_on.db",
                                                        )
    flaton_db = ProductDB(flaton_db_name)

    thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH",
                                                        "thar.db",
                                                        )
    thar_db = ProductDB(thar_db_name)



    from igrins.libs.process_thar import COMBINED_IMAGE_DESC, ONED_SPEC_JSON
    raw_spec_products = igr_storage.load([COMBINED_IMAGE_DESC, ONED_SPEC_JSON],
                                         sky_basename)

    # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec"))

    SKY_WVLSOL_JSON_DESC = ("PRIMARY_CALIB_PATH", "SKY_", ".wvlsol_v1.json")

    wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC],
                                       sky_basename)[SKY_WVLSOL_JSON_DESC]

    orders_w_solutions = wvlsol_products["orders"]
    wvl_solutions = wvlsol_products["wvl_sol"]

    ap = load_aperture(igr_storage, band, master_obsid,
                       flaton_db,
                       raw_spec_products[ONED_SPEC_JSON]["orders"],
                       orders_w_solutions)
    #orders_w_solutions = ap.orders


    if 1: # load reference data
        from igrins.libs.master_calib import load_sky_ref_data

        ref_utdate = config.get_value("REFDATE", utdate)

        sky_ref_data = load_sky_ref_data(ref_utdate, band)


        ohlines_db = sky_ref_data["ohlines_db"]
        ref_ohline_indices = sky_ref_data["ohline_indices"]


        orders_w_solutions = wvlsol_products["orders"]
        wvl_solutions = wvlsol_products["wvl_sol"]


    if 0:
        raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec"))



        basename = flaton_db.query(band, sky_master_obsid)
        flaton_path = ProductPath(igr_path, basename)

        aperture_solution_products = PipelineProducts.load(flaton_path.get_secondary_path("aperture_solutions"))

        bottomup_solutions = aperture_solution_products["bottom_up_solutions"]


        basename = thar_db.query(band, sky_master_obsid)
        thar_path = ProductPath(igr_path, basename)
        fn = thar_path.get_secondary_path("median_spectra")
        # thar_products = PipelineProducts.load(fn)

        # basename = sky_db.query(band, sky_master_obsid)
        # sky_path = ProductPath(igr_path, basename)
        fn = sky_path.get_secondary_path("wvlsol_v1")
        wvlsol_products = PipelineProducts.load(fn)

        if 1:
            from igrins.libs.master_calib import load_sky_ref_data

            ref_utdate = "20140316"

            sky_ref_data = load_sky_ref_data(ref_utdate, band)


            ohlines_db = sky_ref_data["ohlines_db"]
            ref_ohline_indices = sky_ref_data["ohline_indices"]


            orders_w_solutions = wvlsol_products["orders"]
            wvl_solutions = wvlsol_products["wvl_sol"]

        if 1: # make aperture

            _o_s = dict(zip(raw_spec_products["orders"], bottomup_solutions))
            ap =  Apertures(orders_w_solutions,
                            [_o_s[o] for o in orders_w_solutions])


    if 1:

        n_slice_one_direction = 2
        n_slice = n_slice_one_direction*2 + 1
        i_center = n_slice_one_direction
        slit_slice = np.linspace(0., 1., n_slice+1)

        slice_center = (slit_slice[i_center], slit_slice[i_center+1])
        slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \
                    for i in range(1, n_slice_one_direction+1)]
        slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \
                      for i in range(n_slice_one_direction)]

        d = raw_spec_products[COMBINED_IMAGE_DESC].data
        s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1])

        s_up, s_down = [], []
        for s1, s2 in slice_up:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_up.append(s)
        for s1, s2 in slice_down:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_down.append(s)


    if 1:
        # now fit

        #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions]


        if 0:
            def test_order(oi):
                ax=subplot(111)
                ax.plot(wvl_solutions[oi], s_center[oi])
                #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi])
                o = orders[oi]
                line_indices = ref_ohline_indices[o]
                for li in line_indices:
                    um = np.take(ohlines_db.um, li)
                    intensity = np.take(ohlines_db.intensity, li)
                    ax.vlines(um, ymin=0, ymax=-intensity)




        from igrins.libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel

        def get_reidentified_lines_OH(orders_w_solutions,
                                      wvl_solutions, s_center):
            ref_pixel_list, reidentified_lines = \
                            fit_ohlines(ohlines_db, ref_ohline_indices,
                                        orders_w_solutions,
                                        wvl_solutions, s_center)

            reidentified_lines_map = dict(zip(orders_w_solutions,
                                              reidentified_lines))
            return reidentified_lines_map, ref_pixel_list

        if band == "H":
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh):
                centroids = fit_ohlines_pixel(s_center,
                                              ref_pixel_list)
                return centroids

        else: # band K
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            import igrins.libs.master_calib as master_calib
            fn = "hitran_bootstrap_K_%s.json" % ref_utdate
            bootstrap_name = master_calib.get_master_calib_abspath(fn)
            import json
            bootstrap = json.load(open(bootstrap_name))

            import igrins.libs.hitran as hitran
            r, ref_pixel_dict_hitrans = hitran.reidentify(wvl_solutions,
                                                          s_center,
                                                          bootstrap)
            # for i, s in r.items():
            #     ss = reidentified_lines_map[int(i)]
            #     ss0 = np.concatenate([ss[0], s["pixel"]])
            #     ss1 = np.concatenate([ss[1], s["wavelength"]])
            #     reidentified_lines_map[int(i)] = (ss0, ss1)

            #reidentified_lines_map, ref_pixel_list

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh,
                               ref_pixel_dict_hitrans=ref_pixel_dict_hitrans):
                centroids_oh = fit_ohlines_pixel(s_center,
                                                 ref_pixel_list)

                s_dict = dict(zip(orders_w_solutions, s_center))
                centroids_dict_hitrans = hitran.fit_hitrans_pixel(s_dict,
                                                                  ref_pixel_dict_hitrans)
                centroids = []
                for o, c_oh in zip(orders_w_solutions, centroids_oh):
                    if o in centroids_dict_hitrans:
                        c = np.concatenate([c_oh,
                                            centroids_dict_hitrans[o]["pixel"]])
                        centroids.append(c)
                    else:
                        centroids.append(c_oh)

                return centroids

        # reidentified_lines_map = get_reidentified_lines(orders_w_solutions,
        #                                                 wvl_solutions,
        #                                                 s_center)


    if 1:
        # TODO: we should not need this, instead recycle from preivious step.
        fitted_centroid_center = refit_centroid(s_center)
        # fitted_centroid_center = fit_ohlines_pixel(s_center,
        #                                            ref_pixel_list)

        d_shift_up = []
        for s in s_up:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            d_shift = [b-a for a, b in zip(fitted_centroid_center,
                                           fitted_centroid)]
            d_shift_up.append(d_shift)

        d_shift_down = []
        for s in s_down:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            #fitted_centroid_center,
            d_shift = [b-a for a, b in zip(fitted_centroid_center,
                                           fitted_centroid)]
            d_shift_down.append(d_shift)


    if 1:
        # now fit
        orders = orders_w_solutions

        x_domain = [0, 2048]
        y_domain = [orders[0]-2, orders[-1]+2]


        xl = np.concatenate(fitted_centroid_center)

        yl_ = [o + np.zeros_like(x_) for o, x_ in zip(orders,
                                                      fitted_centroid_center)]
        yl = np.concatenate(yl_)

        from igrins.libs.ecfit import fit_2dspec, check_fit_simple

        zl_list = [np.concatenate(d_) for d_ \
                   in d_shift_down[::-1] + d_shift_up]

        pm_list = []
        for zl in zl_list:
            p, m = fit_2dspec(xl, yl, zl,
                              x_degree=1, y_degree=1,
                              x_domain=x_domain, y_domain=y_domain)
            pm_list.append((p,m))

        zz_std_list = []
        for zl, (p, m)  in zip(zl_list, pm_list):
            z_m = p(xl[m], yl[m])
            zz = z_m - zl[m]
            zz_std_list.append(zz.std())

        fig_list = []
        from matplotlib.figure import Figure
        for zl, (p, m)  in zip(zl_list, pm_list):
            fig = Figure()
            check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders)
            fig_list.append(fig)


    if 1:
        xi = np.linspace(0, 2048, 128+1)
        from astropy.modeling import fitting
        from astropy.modeling.polynomial import Chebyshev2D
        x_domain = [0, 2048]
        y_domain = [0., 1.]

        p2_list = []
        for o in orders:
            oi = np.zeros_like(xi) + o
            shift_list = []
            for p,m in pm_list[:n_slice_one_direction]:
                shift_list.append(p(xi, oi))

            shift_list.append(np.zeros_like(xi))

            for p,m in pm_list[n_slice_one_direction:]:
                shift_list.append(p(xi, oi))


            p_init = Chebyshev2D(x_degree=1, y_degree=2,
                                 x_domain=x_domain, y_domain=y_domain)
            f = fitting.LinearLSQFitter()

            yi = 0.5*(slit_slice[:-1] + slit_slice[1:])
            xl, yl = np.meshgrid(xi, yi)
            zl = np.array(shift_list)
            p = f(p_init, xl, yl, zl)

            p2_list.append(p)

    if 1:
        p2_dict = dict(zip(orders, p2_list))

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)
        for o in ap.orders:
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o
            slitoffset_map[msk] = p2_dict[o](xl[msk], slitpos_map[msk])

        import astropy.io.fits as pyfits
        #fn = sky_path.get_secondary_path("slitoffset_map.fits")
        #pyfits.PrimaryHDU(data=slitoffset_map).writeto(fn, clobber=True)

        SLITOFFSET_FITS_DESC = ("PRIMARY_CALIB_PATH", "SKY_", ".slitoffset_map.fits")
        from igrins.libs.products import PipelineImageBase, PipelineProducts
        distortion_products = PipelineProducts("Distortion map")
        distortion_products.add(SLITOFFSET_FITS_DESC,
                                PipelineImageBase([],
                                              slitoffset_map))

        igr_storage.store(distortion_products,
                          mastername=sky_filenames[0],
                          masterhdu=None)


        from igrins.libs.qa_helper import figlist_to_pngs
        sky_figs = igr_path.get_section_filename_base("QA_PATH",
                                                      "oh_distortion",
                                                      "oh_distortion_dir")
        print fig_list
        figlist_to_pngs(sky_figs, fig_list)


    if 0:
        # test
        x = np.arange(2048, dtype="d")
        oi = 10
        o = orders[oi]

        yi = 0.5*(slit_slice[:-1] + slit_slice[1:])

        ax1 = subplot(211)
        s1 = s_up[-1][oi]
        s2 = s_down[-1][oi]

        ax1.plot(x, s1)
        ax1.plot(x, s2)

        ax2 = subplot(212, sharex=ax1, sharey=ax1)
        dx1 = p2_dict[o](x, yi[-1]+np.zeros_like(x))
        ax2.plot(x-dx1, s1)

        dx2 = p2_dict[o](x, yi[0]+np.zeros_like(x))
        ax2.plot(x-dx2, s2)
Esempio n. 12
0
def process_distortion_sky_band(utdate, refdate, band, obsids, config):

    from igrins.libs.products import ProductDB, PipelineStorage

    igr_path = IGRINSPath(config, utdate)

    igr_storage = PipelineStorage(igr_path)

    sky_filenames = igr_path.get_filenames(band, obsids)

    sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0]

    master_obsid = obsids[0]

    flaton_db_name = igr_path.get_section_filename_base(
        "PRIMARY_CALIB_PATH",
        "flat_on.db",
    )
    flaton_db = ProductDB(flaton_db_name)

    thar_db_name = igr_path.get_section_filename_base(
        "PRIMARY_CALIB_PATH",
        "thar.db",
    )
    thar_db = ProductDB(thar_db_name)

    from igrins.libs.process_thar import COMBINED_IMAGE_DESC, ONED_SPEC_JSON
    raw_spec_products = igr_storage.load([COMBINED_IMAGE_DESC, ONED_SPEC_JSON],
                                         sky_basename)

    # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec"))

    SKY_WVLSOL_JSON_DESC = ("PRIMARY_CALIB_PATH", "SKY_", ".wvlsol_v1.json")

    wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC],
                                       sky_basename)[SKY_WVLSOL_JSON_DESC]

    orders_w_solutions = wvlsol_products["orders"]
    wvl_solutions = wvlsol_products["wvl_sol"]

    ap = load_aperture(igr_storage, band, master_obsid, flaton_db,
                       raw_spec_products[ONED_SPEC_JSON]["orders"],
                       orders_w_solutions)
    #orders_w_solutions = ap.orders

    if 1:  # load reference data
        from igrins.libs.master_calib import load_sky_ref_data

        ref_utdate = config.get_value("REFDATE", utdate)

        sky_ref_data = load_sky_ref_data(ref_utdate, band)

        ohlines_db = sky_ref_data["ohlines_db"]
        ref_ohline_indices = sky_ref_data["ohline_indices"]

        orders_w_solutions = wvlsol_products["orders"]
        wvl_solutions = wvlsol_products["wvl_sol"]

    if 0:
        raw_spec_products = PipelineProducts.load(
            sky_path.get_secondary_path("raw_spec"))

        basename = flaton_db.query(band, sky_master_obsid)
        flaton_path = ProductPath(igr_path, basename)

        aperture_solution_products = PipelineProducts.load(
            flaton_path.get_secondary_path("aperture_solutions"))

        bottomup_solutions = aperture_solution_products["bottom_up_solutions"]

        basename = thar_db.query(band, sky_master_obsid)
        thar_path = ProductPath(igr_path, basename)
        fn = thar_path.get_secondary_path("median_spectra")
        # thar_products = PipelineProducts.load(fn)

        # basename = sky_db.query(band, sky_master_obsid)
        # sky_path = ProductPath(igr_path, basename)
        fn = sky_path.get_secondary_path("wvlsol_v1")
        wvlsol_products = PipelineProducts.load(fn)

        if 1:
            from igrins.libs.master_calib import load_sky_ref_data

            ref_utdate = "20140316"

            sky_ref_data = load_sky_ref_data(ref_utdate, band)

            ohlines_db = sky_ref_data["ohlines_db"]
            ref_ohline_indices = sky_ref_data["ohline_indices"]

            orders_w_solutions = wvlsol_products["orders"]
            wvl_solutions = wvlsol_products["wvl_sol"]

        if 1:  # make aperture

            _o_s = dict(zip(raw_spec_products["orders"], bottomup_solutions))
            ap = Apertures(orders_w_solutions,
                           [_o_s[o] for o in orders_w_solutions])

    if 1:

        n_slice_one_direction = 2
        n_slice = n_slice_one_direction * 2 + 1
        i_center = n_slice_one_direction
        slit_slice = np.linspace(0., 1., n_slice + 1)

        slice_center = (slit_slice[i_center], slit_slice[i_center + 1])
        slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \
                    for i in range(1, n_slice_one_direction+1)]
        slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \
                      for i in range(n_slice_one_direction)]

        d = raw_spec_products[COMBINED_IMAGE_DESC].data
        s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1])

        s_up, s_down = [], []
        for s1, s2 in slice_up:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_up.append(s)
        for s1, s2 in slice_down:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_down.append(s)

    if 1:
        # now fit

        #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions]

        if 0:

            def test_order(oi):
                ax = subplot(111)
                ax.plot(wvl_solutions[oi], s_center[oi])
                #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi])
                o = orders[oi]
                line_indices = ref_ohline_indices[o]
                for li in line_indices:
                    um = np.take(ohlines_db.um, li)
                    intensity = np.take(ohlines_db.intensity, li)
                    ax.vlines(um, ymin=0, ymax=-intensity)

        from igrins.libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel

        def get_reidentified_lines_OH(orders_w_solutions, wvl_solutions,
                                      s_center):
            ref_pixel_list, reidentified_lines = \
                            fit_ohlines(ohlines_db, ref_ohline_indices,
                                        orders_w_solutions,
                                        wvl_solutions, s_center)

            reidentified_lines_map = dict(
                zip(orders_w_solutions, reidentified_lines))
            return reidentified_lines_map, ref_pixel_list

        if band == "H":
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh):
                centroids = fit_ohlines_pixel(s_center, ref_pixel_list)
                return centroids

        else:  # band K
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            import igrins.libs.master_calib as master_calib
            fn = "hitran_bootstrap_K_%s.json" % ref_utdate
            bootstrap_name = master_calib.get_master_calib_abspath(fn)
            import json
            bootstrap = json.load(open(bootstrap_name))

            import igrins.libs.hitran as hitran
            r, ref_pixel_dict_hitrans = hitran.reidentify(
                wvl_solutions, s_center, bootstrap)

            # for i, s in r.items():
            #     ss = reidentified_lines_map[int(i)]
            #     ss0 = np.concatenate([ss[0], s["pixel"]])
            #     ss1 = np.concatenate([ss[1], s["wavelength"]])
            #     reidentified_lines_map[int(i)] = (ss0, ss1)

            #reidentified_lines_map, ref_pixel_list

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh,
                               ref_pixel_dict_hitrans=ref_pixel_dict_hitrans):
                centroids_oh = fit_ohlines_pixel(s_center, ref_pixel_list)

                s_dict = dict(zip(orders_w_solutions, s_center))
                centroids_dict_hitrans = hitran.fit_hitrans_pixel(
                    s_dict, ref_pixel_dict_hitrans)
                centroids = []
                for o, c_oh in zip(orders_w_solutions, centroids_oh):
                    if o in centroids_dict_hitrans:
                        c = np.concatenate(
                            [c_oh, centroids_dict_hitrans[o]["pixel"]])
                        centroids.append(c)
                    else:
                        centroids.append(c_oh)

                return centroids

        # reidentified_lines_map = get_reidentified_lines(orders_w_solutions,
        #                                                 wvl_solutions,
        #                                                 s_center)

    if 1:
        # TODO: we should not need this, instead recycle from preivious step.
        fitted_centroid_center = refit_centroid(s_center)
        # fitted_centroid_center = fit_ohlines_pixel(s_center,
        #                                            ref_pixel_list)

        d_shift_up = []
        for s in s_up:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            d_shift = [
                b - a for a, b in zip(fitted_centroid_center, fitted_centroid)
            ]
            d_shift_up.append(d_shift)

        d_shift_down = []
        for s in s_down:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            #fitted_centroid_center,
            d_shift = [
                b - a for a, b in zip(fitted_centroid_center, fitted_centroid)
            ]
            d_shift_down.append(d_shift)

    if 1:
        # now fit
        orders = orders_w_solutions

        x_domain = [0, 2048]
        y_domain = [orders[0] - 2, orders[-1] + 2]

        xl = np.concatenate(fitted_centroid_center)

        yl_ = [
            o + np.zeros_like(x_)
            for o, x_ in zip(orders, fitted_centroid_center)
        ]
        yl = np.concatenate(yl_)

        from igrins.libs.ecfit import fit_2dspec, check_fit_simple

        zl_list = [np.concatenate(d_) for d_ \
                   in d_shift_down[::-1] + d_shift_up]

        pm_list = []
        for zl in zl_list:
            p, m = fit_2dspec(xl,
                              yl,
                              zl,
                              x_degree=1,
                              y_degree=1,
                              x_domain=x_domain,
                              y_domain=y_domain)
            pm_list.append((p, m))

        zz_std_list = []
        for zl, (p, m) in zip(zl_list, pm_list):
            z_m = p(xl[m], yl[m])
            zz = z_m - zl[m]
            zz_std_list.append(zz.std())

        fig_list = []
        from matplotlib.figure import Figure
        for zl, (p, m) in zip(zl_list, pm_list):
            fig = Figure()
            check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders)
            fig_list.append(fig)

    if 1:
        xi = np.linspace(0, 2048, 128 + 1)
        from astropy.modeling import fitting
        from astropy.modeling.polynomial import Chebyshev2D
        x_domain = [0, 2048]
        y_domain = [0., 1.]

        p2_list = []
        for o in orders:
            oi = np.zeros_like(xi) + o
            shift_list = []
            for p, m in pm_list[:n_slice_one_direction]:
                shift_list.append(p(xi, oi))

            shift_list.append(np.zeros_like(xi))

            for p, m in pm_list[n_slice_one_direction:]:
                shift_list.append(p(xi, oi))

            p_init = Chebyshev2D(x_degree=1,
                                 y_degree=2,
                                 x_domain=x_domain,
                                 y_domain=y_domain)
            f = fitting.LinearLSQFitter()

            yi = 0.5 * (slit_slice[:-1] + slit_slice[1:])
            xl, yl = np.meshgrid(xi, yi)
            zl = np.array(shift_list)
            p = f(p_init, xl, yl, zl)

            p2_list.append(p)

    if 1:
        p2_dict = dict(zip(orders, p2_list))

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)
        for o in ap.orders:
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o
            slitoffset_map[msk] = p2_dict[o](xl[msk], slitpos_map[msk])

        import astropy.io.fits as pyfits
        #fn = sky_path.get_secondary_path("slitoffset_map.fits")
        #pyfits.PrimaryHDU(data=slitoffset_map).writeto(fn, clobber=True)

        SLITOFFSET_FITS_DESC = ("PRIMARY_CALIB_PATH", "SKY_",
                                ".slitoffset_map.fits")
        from igrins.libs.products import PipelineImageBase, PipelineProducts
        distortion_products = PipelineProducts("Distortion map")
        distortion_products.add(SLITOFFSET_FITS_DESC,
                                PipelineImageBase([], slitoffset_map))

        igr_storage.store(distortion_products,
                          mastername=sky_filenames[0],
                          masterhdu=None)

        from igrins.libs.qa_helper import figlist_to_pngs
        sky_figs = igr_path.get_section_filename_base("QA_PATH",
                                                      "oh_distortion",
                                                      "oh_distortion_dir")
        print fig_list
        figlist_to_pngs(sky_figs, fig_list)

    if 0:
        # test
        x = np.arange(2048, dtype="d")
        oi = 10
        o = orders[oi]

        yi = 0.5 * (slit_slice[:-1] + slit_slice[1:])

        ax1 = subplot(211)
        s1 = s_up[-1][oi]
        s2 = s_down[-1][oi]

        ax1.plot(x, s1)
        ax1.plot(x, s2)

        ax2 = subplot(212, sharex=ax1, sharey=ax1)
        dx1 = p2_dict[o](x, yi[-1] + np.zeros_like(x))
        ax2.plot(x - dx1, s1)

        dx2 = p2_dict[o](x, yi[0] + np.zeros_like(x))
        ax2.plot(x - dx2, s2)