Esempio n. 1
0
 def make_mock_image(self,
                     truex,
                     truey,
                     b,
                     fluxes,
                     nc,
                     cf,
                     noise,
                     two_star_mode=None):
     mocks = []
     if two_star_mode is not None:
         mock0 = image_model_eval(truex, truey, fluxes[b],
                                  self.truebacks[b], self.imsz, nc, cf)
     else:
         mock0 = image_model_eval(truex, truey, fluxes[b],
                                  self.normal_backs[b], self.imsz, nc, cf)
     mock0[mock0 < 1] = 1.
     variance = mock0 / self.gain
     print np.mean(variance), np.std(variance)
     for n in xrange(self.n_realizations):
         # here is where I would put an if statement like
         # if two_star_mode == 'rx3':
         #     mock  = mock0 + (np.sqrt(variance)*np.mean(noise[:,n]))
         # i believe it would be the mean of the three since we already coadd the model image
         # from which we calculate the variance.
         mock = mock0 + (np.sqrt(variance) * noise[b, n])
         mocks.append(mock)
     return mocks
Esempio n. 2
0
    def make_srcmap(self, ifield, cat, flux_idx=-1, band=0, nbin=0., nx=1024, ny=1024, nwide=17, multfac=7.0, \
                    pcat_model_eval=False, libmmult=None, dx=2.5, dy=-1.0):
        ''' 
        This function takes in a catalog, finds the PSF for the specific ifield, makes a PSF template and then populates an image with 
        model sources. When we use galaxies for mocks we can do this because CIBER's angular resolution is large enough that galaxies are
        well modeled as point sources. 

        Note (5/21/20): This function currently only places sources at integer locations, which should probably change
        for any real implementation used in analysis.
        
        Note (5/22/20): with the integration of PCAT's model evaluation routines, we can now do sub-pixel source placement
        and it is a factor of 6 faster than the original implementation when at scale (e.g. catalog sources down to 25th magnitude)
        
        dx and dy are offsets meant to be used when comparing PCAT's model evaluation with the original, but is not strictly 
        necessary for actual model evaluation. In other words, these can be set to zero when not doing comparisons.
        '''

        Nsrc = cat.shape[0]

        srcmap = np.zeros((nx * 2, ny * 2))

        Nlarge = nx + 30 + 30

        if self.psf_template is None:

            print('generating psf template because it was none')

            self.get_psf(ifield=ifield,
                         band=band,
                         nx=nx,
                         ny=ny,
                         multfac=multfac,
                         poly_fit=pcat_model_eval,
                         nwide=nwide)

        if pcat_model_eval:

            srcmap = image_model_eval(
                np.array(cat[:, 0]).astype(np.float32) + dx,
                np.array(cat[:, 1]).astype(np.float32) - dy,
                np.array(cat[:, flux_idx]).astype(np.float32),
                0., (nx, ny),
                35,
                self.cf,
                lib=self.libmmult.pcat_model_eval)

            return srcmap
        else:

            xs = np.round(cat[:, 0]).astype(np.int32)
            ys = np.round(cat[:, 1]).astype(np.int32)

            for i in range(Nsrc):
                srcmap[Nlarge / 2 + 2 + xs[i] - nwide:Nlarge / 2 + 2 + xs[i] +
                       nwide + 1,
                       Nlarge / 2 - 1 + ys[i] - nwide:Nlarge / 2 - 1 + ys[i] +
                       nwide + 1] += self.psf_template * cat[i, flux_idx]

            return srcmap[nx / 2 + 30:3 * nx / 2 + 30,
                          ny / 2 + 30:3 * ny / 2 + 30]
Esempio n. 3
0
array_2d_double = npct.ndpointer(dtype=np.float64,
                                 ndim=2,
                                 flags="C_CONTIGUOUS")
libmmult = npct.load_library('pcat-lion', '.')
libmmult.pcat_model_eval.restype = None
libmmult.pcat_model_eval.argtypes = [
    c_int, c_int, c_int, c_int, c_int, array_2d_float, array_2d_float,
    array_2d_float, array_1d_int, array_1d_int, array_2d_float, array_2d_float,
    array_2d_float, array_2d_double, c_int, c_int, c_int, c_int
]

noise = np.random.normal(size=(imsz[1], imsz[0])).astype(np.float32)
mock = image_model_eval(np.concatenate([truex, xphon]),
                        np.concatenate([truey, yphon]),
                        np.concatenate([truef, fphon]),
                        trueback,
                        imsz,
                        nc,
                        cf,
                        lib=libmmult.pcat_model_eval)
mock[mock < 1] = 1.  # maybe some negative pixels
variance = mock / gain
oldmock = mock.copy()
mock += (np.sqrt(variance) * np.random.normal(size=(imsz[1], imsz[0]))).astype(
    np.float32)

diff = mock - oldmock
print np.sum(diff * diff / variance)

f = open('Data/mockL_pix.txt', 'w')
f.write('%1d\t%1d\t1\n0.\t%0.3f' % (imsz[0], imsz[1], gain))
f.close()
Esempio n. 4
0
        rhol = np.sqrt(nstar / float(max_x * max_y))
        nx = np.ceil(max_x * rhol)
        ny = np.ceil(max_y * rhol)
        lx = max_x / float(nx)
        ly = max_y / float(ny)
        truex = np.tile(np.arange(nx) * lx + lx / 2. + minx,
                        (ny, 1)).flatten().astype(np.float32)
        truey = np.tile(np.arange(ny) * ly + ly / 2. + minx,
                        (nx, 1)).flatten('F').astype(np.float32)
        ind = np.random.choice(int(nx * ny), size=nstar, replace=False)
        truef = np.ones_like(truex) * 20000

print "Max flux %1.3e" % (max(truef))

noise = np.random.normal(size=(imsz[1], imsz[0])).astype(np.float32)
mock = image_model_eval(truex, truey, truef, trueback, imsz, nc, cf)
mock[mock < 1] = 1.  # maybe some negative pixels
variance = trueback / gain  # mock/gain
mock += (np.sqrt(variance) * np.random.normal(size=(imsz[1], imsz[0]))).astype(
    np.float32)

plt.imshow(mock, origin='lower', interpolation='None')
plt.show()

fname = 'Data/mock' + flabel

f = open(fname + 'pix.txt', 'w')
f.write('%1d\t%1d\t1\n0.\t%0.3f' % (imsz[0], imsz[1], gain))
f.close()

np.savetxt(fname + 'cts.txt', mock)
def multiband_retro_frames(result_path, ref_cat_path, data_path,\
                        hubble_cat_path=None, \
                        chain_datatype='npz', \
                        nframes=10, \
                        mock2_type=None, \
                        boolplotsave=1, \
                        boolplotshow=0, \
                        frame_number_list=None, \
                        datatype='real', \
                        plttype='pdf', \
                        bright_n=50, \
                        imdim=100,  \
                        bands=['r']):

    if datatype == 'mock':
        labldata = 'Mock Truth'
    else:
        labldata = datatype

    sizefac = 10. * 136

    if chain_datatype.lower() == 'npz':
        chain = np.load(chain_path + '/chain.npz')
    elif chain_datatype.lower() == 'hdf5':
        chain = h5py.File(chain_path + '/chain.hdf5', 'r')
    else:
        raise IOError(
            'Could not read in data type, please use .npz or .hdf5 files.')

    nsrcs = chain['n']
    xsrcs = np.array(chain['x'], dtype=np.float32)
    ysrcs = np.array(chain['y'], dtype=np.float32)
    fsrcs = chain['f']
    colorsrcs = chain['colors']
    chi2 = chain['chi2']
    timestats = chain['times']  # should be an array of shape (nsamp, 5)
    acceptfracs = chain['accept']
    nmgy_per_count = chain['nmgy']
    bkgs = chain['back']
    pixel_transfer_mats = chain['pixel_transfer_mats']
    print 'backgrounds:', bkgs
    nsamp = len(nsrcs)
    nbands = len(bands)

    ref_cat = np.loadtxt(ref_cat_path)
    ref_x = ref_cat[:, 0]
    ref_y = ref_cat[:, 1]
    ref_f = ref_cat[:, 2:]
    ref_mags = []
    for b in xrange(nbands):
        ref_mag = adu_to_magnitude(ref_f[:, b], nmgy_per_count[b])
        ref_mags.append(ref_mag)

    ref_colors = []
    for b in xrange(nbands - 1):
        ref_color = ref_mags[b] - ref_mags[b + 1]
        ref_colors.append(ref_color)

    hpath2 = '/n/fink1/rfeder/mpcat/multiband_pcat/Data/idR-002583-2-0136/hubble_catalog_2583-2-0136_astrans.txt'
    # use transform q to get hubble coordinates in other bands, or mean_dpos
    if hubble_cat_path is not None:
        hubble_coords, hf, hmask, posmask, hx, hy = get_hubble(hubble_cat_path,
                                                               hpath_2=hpath2)
        #hubble_coords = np.loadtxt(hubble_cat_path)
        #hx0 = hubble_coords[:,0]-310
        #hy0 = hubble_coords[:,1]-630
        #h_rmag = hubble_coords[:,2]
    #hx1, hy1 = transform_q(h_coords[0][posmask], h_coords[1][posmask], pixel_transfer_mats[first_frame_band_no-

    psf_basic_path = data_path + '/' + dataname + '/psfs/' + dataname + '-psf.txt'
    cts_basic_path = data_path + '/' + dataname + '/cts/' + dataname + '-cts.txt'

    gains = dict()
    biases = dict()

    #if datatype != 'mock':
    #    frame_basic_path = data_path+'/'+dataname+'/frames/frame--'+run_cam_field+'.fits'
    #    gains = dict({"r":4.61999, "i":4.38999, "g":4.2, "z":5.67999})
    #    biases = dict({"r":1044., "i":1177., "g":1113., "z":1060.})

    for band in bands:
        pix_path = data_path + '/' + dataname + '/pixs/' + dataname + '-pix' + band + '.txt'
        g = open(pix_path)
        a = g.readline().split()
        bias, gain = [np.float32(i) for i in np.float32(g.readline().split())]
        gains[band] = gain
        biases[band] = bias

    #print 'biases:', biases
    #print 'gains:', gains
    #print 'nmgy_per_count:', nmgy_per_count

    color_bins = np.linspace(-4, 4, 50)

    #for band in bands:
    #if datatype=='mock':
    #pix_path = data_path+'/'+dataname+'/pixs/'+dataname+'-pix'+band+'.txt'
    #g = open(pix_path)
    #a = g.readline().split()
    #np.float32(g.readline().split())

    #frame_path = frame_basic_path.replace('--', '-'+band+'-')
    #mean_dpos = dict({'r-i':[-1.,3.], 'r-g':[3.,10.], 'r-z':[1.,7.], 'r-r':[0.,0.]})
    mean_dpos = dict({'r-i': [-1., 3.], 'r-g': [-2., 12.]})

    if frame_number_list is None:
        frame_number_list = np.linspace(0, nsamp, nframes)

    c = 0
    for num in frame_number_list:

        num = max(int(num - 1), 0)

        x = 5 * nbands

        # data, residual, magnitude distribution
        plt.figure(figsize=(15, 10))

        for b in xrange(nbands):
            bop = int(3 * b)
            psf_path = psf_basic_path.replace('.txt', bands[b] + '.txt')
            #if datatype != 'mock':
            #    psf_path = psf_path.replace('.txt', '-refit_g.txt') # only if using refit psf!
            #print 'psf_path:', psf_path
            cts_path = cts_basic_path.replace('.txt', bands[b] + '.txt')
            psf, nc, cf = get_psf_and_vals(psf_path)
            #get background
            data = np.loadtxt(cts_path)
            imsz = [len(data), len(data[0])]
            if datatype != 'mock':
                data -= biases[bands[b]]
                #print biases[bands[b]]

            if b == 0:
                xs = xsrcs[num]
                ys = ysrcs[num]
                if hubble_cat_path is not None:
                    hx_band, hy_band = hx, hy
            else:
                xs, ys = transform_q(xsrcs[num], ysrcs[num],
                                     pixel_transfer_mats[b - 1])
                if datatype != 'mock':
                    col_name = bands[0] + '-' + bands[b]
                    #print mean_dpos[col_name]
                    xs -= mean_dpos[col_name][0]
                    ys -= mean_dpos[col_name][1]
                    if hubble_cat_path is not None:
                        #print 'pixel_transfer_mats'
                        #print pixel_transfer_mats
                        hx_band, hy_band = transform_q(
                            hx, hy, pixel_transfer_mats[b - 1])
                        hx_band -= mean_dpos[col_name][0]
                        hy_band -= mean_dpos[col_name][1]
            model = image_model_eval(xs, ys, fsrcs[b, num], bkgs[b], imsz, nc,
                                     cf)
            resid = data - model
            variance = data / gains[bands[b]]
            weight = 1. / variance

            np.savetxt(
                result_path + '/residuals/resid_' + str(num) + str(bands[b]) +
                '.txt', resid * np.sqrt(weight))
            # plt.figure()
            # plt.imshow(resids[0,b,:,:]*np.sqrt(weight), origin='lower', interpolation='none', cmap='Greys', vmin=-30, vmax=30)
            # if boolplotsave:
            #     plt.savefig(result_path + '/residuals/resid_' + str(num) +str(bands[b])+ '.'+plttype, bbox_inches='tight')
            # plt.close()

            #plt.figure(figsize=(15,x))

            plt.subplot(nbands, 3, 1 + bop)
            plt.imshow(data,
                       origin='lower',
                       interpolation='none',
                       cmap='Greys',
                       vmin=np.min(data),
                       vmax=np.percentile(data, 95))
            plt.colorbar()
            if hubble_cat_path is not None:
                #print 'using Hubble coordinates'
                #print 'hx_band[posmask]:'
                #print hx_band[posmask]
                #print 'hmask length'
                #print len(hmask)
                #print 'hx_band[posmask][hmask]'
                #print hx_band[posmask][hmask]
                plt.scatter(hx_band[hmask],
                            hy_band[hmask],
                            marker='+',
                            s=2 * mag_to_cts(hf[hmask], nmgy_per_count[b]) /
                            sizefac,
                            color='lime')
                #plt.scatter(hubble_coords[1+2*b][posmask][hmask], hubble_coords[2*b][posmask][hmask], marker='+', s=2*mag_to_cts(hf[hmask], nmgy) / sizefac, color='lime') #hubble
            else:
                mask = ref_f[:,
                             0] > 250  # will have to change this for other data sets
                plt.scatter(ref_x[mask],
                            ref_y[mask],
                            marker='+',
                            s=ref_f[:, b][mask] / sizefac,
                            color='lime')
                mask = np.logical_not(mask)
                plt.scatter(ref_x[mask],
                            ref_y[mask],
                            marker='+',
                            s=ref_f[:, b][mask] / sizefac,
                            color='g')
            if len(data) > 100:
                plt.scatter(xs,
                            ys,
                            marker='x',
                            s=(len(data)**2 / 1e5) * fsrcs[b, num] /
                            (2 * sizefac),
                            color='r')
            else:
                plt.scatter(xs,
                            ys,
                            marker='x',
                            s=(1e4 / len(data)**2) * fsrcs[b, num] /
                            (2 * sizefac),
                            color='r')
            plt.xlim(-0.5, len(data) - 0.5)
            plt.ylim(-0.5, len(data) - 0.5)

            plt.subplot(nbands, 3, 2 + bop)
            plt.imshow(resid * np.sqrt(weight),
                       origin='lower',
                       interpolation='none',
                       cmap='Greys',
                       vmin=-5,
                       vmax=5)
            plt.xlim(-0.5, len(data) - 0.5)
            plt.ylim(-0.5, len(data) - 0.5)
            plt.colorbar()

            plt.subplot(nbands, 3, 3 + bop)
            mags = adu_to_magnitude(fsrcs[b, num], nmgy_per_count[b])
            mags = mags[~np.isinf(mags)]

            (n, bins, patches) = plt.hist(ref_mags[b],
                                          histtype='step',
                                          label=labldata,
                                          color='g')
            plt.hist(mags,
                     bins=bins,
                     alpha=0.5,
                     label='Chain - ' + bands[b],
                     color='r',
                     histtype='step')
            plt.legend()
            plt.xlabel(str(bands[b]))
            plt.yscale('log')
        if boolplotsave:
            plt.savefig(result_path + '/frames/sample_' + str(num) + '_mags.' +
                        plttype,
                        bbox_inches='tight')
        if boolplotshow:
            plt.show()
        plt.close()

        plt.figure(figsize=(10, 5))
        for b in xrange(nbands - 1):
            colors = colorsrcs[b][num]
            colors = adus_to_color(fsrcs[0, num], fsrcs[b + 1, num],
                                   nmgy_per_count)
            plt.subplot(1, nbands - 1, b + 1)
            #print 'colors:', colors
            plt.hist(colors[~np.isnan(colors)],
                     label='Chain',
                     bins=color_bins,
                     bottom=0.1,
                     histtype='step',
                     color='r')
            plt.hist(ref_colors[b],
                     label=labldata,
                     bins=color_bins,
                     bottom=0.1,
                     histtype='step',
                     color='g')
            plt.legend(loc=2)
            plt.yscale('log')
            plt.xlabel(bands[0] + ' - ' + bands[b + 1])
        if boolplotsave and nbands > 1:
            plt.savefig(result_path +
                        '/color_histogram/color_histograms_sample_' +
                        str(num) + '.' + plttype,
                        bbox_inches='tight')
        if boolplotshow and nbands > 1:
            plt.show()
        plt.close()
Esempio n. 6
0
def writ_truedata():

    pathlion = os.environ["LION_PATH"]
    sys.path.insert(0, pathlion)
    from image_eval import image_model_eval, psf_poly_fit

    dictglob = dict()

    sersindx = 2.
    numbsidegrid = 20

    pathliondata = os.environ["LION_DATA_PATH"] + '/data/'
    pathlionimag = os.environ["LION_DATA_PATH"] + '/imag/'
    fileobjt = open(pathliondata + 'sdss.0921_psf.txt')
    numbsidepsfn, factsamp = [np.int32(i) for i in fileobjt.readline().split()]
    fileobjt.close()

    psfn = np.loadtxt(pathliondata + 'sdss.0921_psf.txt',
                      skiprows=1).astype(np.float32)
    cpsf = psf_poly_fit(psfn, factsamp)
    cpsf = cpsf.reshape((-1, cpsf.shape[2]))

    np.random.seed(0)
    numbside = [100, 100]

    # generate stars
    numbstar = 1
    fluxdistslop = np.float32(2.0)
    minmflux = np.float32(250.)
    logtflux = np.random.exponential(scale=1. / (fluxdistslop - 1.),
                                     size=numbstar).astype(np.float32)

    dictglob['numbstar'] = numbstar
    dictglob['xposstar'] = (np.random.uniform(size=numbstar) *
                            (numbside[0] - 1)).astype(np.float32)
    dictglob['yposstar'] = (np.random.uniform(size=numbstar) *
                            (numbside[1] - 1)).astype(np.float32)
    dictglob['fluxdistslop'] = fluxdistslop
    dictglob['minmflux'] = minmflux
    dictglob['fluxstar'] = minmflux * np.exp(logtflux)
    dictglob['specstar'] = dictglob['fluxstar'][None, :]

    dictglob['back'] = np.float32(179.)
    dictglob['gain'] = np.float32(4.62)

    # generate galaxies
    numbgalx = 100
    dictglob['numbgalx'] = numbgalx

    dictglob['xposgalx'] = (np.random.uniform(size=numbgalx) *
                            (numbside[0] - 1)).astype(np.float32)
    dictglob['yposgalx'] = (np.random.uniform(size=numbgalx) *
                            (numbside[1] - 1)).astype(np.float32)

    dictglob['sizegalx'] = samp_powr(2., 10., 1.5, size=numbgalx)
    dictglob['avecfrst'] = (2. * np.random.uniform(size=numbgalx) - 1.).astype(
        np.float32)
    dictglob['avecseco'] = (2. * np.random.uniform(size=numbgalx) - 1.).astype(
        np.float32)
    dictglob['avecthrd'] = (2. * np.random.uniform(size=numbgalx) - 1.).astype(
        np.float32)
    mgtd = np.sqrt(dictglob['avecfrst']**2 + dictglob['avecseco']**2 +
                   dictglob['avecthrd']**2)
    dictglob['avecfrst'] /= mgtd
    dictglob['avecseco'] /= mgtd
    dictglob['avecthrd'] /= mgtd
    dictglob['specgalx'] = samp_powr(2500., 25000., 2., size=numbgalx)[None, :]
    dictglob['sbrtgalx'] = retr_sbrt(dictglob['specgalx'],
                                     dictglob['sizegalx'], sersindx)

    gdat = gdatstrt()

    listsersindx = [0.5, 1., 2., 4., 6., 8., 10.]
    for sersindx in listsersindx:
        gdat.sersindx = sersindx
        gridphon, amplphon = retr_sers(numbsidegrid=numbsidegrid,
                                       sersindx=sersindx,
                                       pathplot=pathlionimag)

        gridphon, amplphon = retr_sers(numbsidegrid=numbsidegrid,
                                       sersindx=sersindx,
                                       pathplot=pathlionimag)
        numbphongalx = (numbsidegrid + 1)**2
        numbener = 1
        numbphon = numbgalx * numbphongalx
        xposphon = np.empty(numbphon)
        yposphon = np.empty(numbphon)
        specphon = np.empty((numbener, numbphon))
        for k in range(dictglob['numbgalx']):
            indx = np.arange(k * numbphongalx, (k + 1) * numbphongalx)
            gridphontemp = gridphon * dictglob['sizegalx'][k]
            xposphon[indx], yposphon[indx], specphon[:, indx] = retr_tranphon(gridphontemp, amplphon, dictglob['xposgalx'][k], dictglob['yposgalx'][k], dictglob['specgalx'][:, k], \
                                                                                                 dictglob['avecfrst'][k], dictglob['avecseco'][k], dictglob['avecthrd'][k], 'fris')

        xposcand = np.concatenate(
            (xposphon, dictglob['xposstar'])).astype(np.float32)
        yposcand = np.concatenate(
            (yposphon, dictglob['yposstar'])).astype(np.float32)
        speccand = np.concatenate((specphon, dictglob['specstar']),
                                  axis=1).astype(np.float32)

        indx = np.where((xposcand < 100.) & (xposcand > 0.) & (yposcand < 100.)
                        & (yposcand > 0.))[0]
        xposcand = xposcand[indx]
        yposcand = yposcand[indx]
        speccand = speccand[:, indx]

        # generate data
        datacnts = image_model_eval(xposcand, yposcand, speccand[0, :],
                                    dictglob['back'], numbside, numbsidepsfn,
                                    cpsf)
        #datacnts[datacnts < 1] = 1. # maybe some negative pixels
        variance = datacnts / dictglob['gain']
        datacnts += (np.sqrt(variance) *
                     np.random.normal(size=(numbside[1], numbside[0]))).astype(
                         np.float32)
        dictglob['datacnts'] = datacnts
        # auxiliary data
        dictglob['numbside'] = numbside
        dictglob['psfn'] = psfn

        # write data to disk
        path = pathliondata + 'true.h5'
        filearry = h5py.File(path, 'w')
        for attr, valu in dictglob.iteritems():
            filearry.create_dataset(attr, data=valu)
        filearry.close()

        gdat.pathlionimag = pathlionimag
        plot_cntsmaps(gdat, datacnts, 'truedatacnts')
        plot_cntsmaps(gdat,
                      datacnts,
                      'truedatacntsphon',
                      xposcand=xposcand,
                      yposcand=yposcand,
                      speccand=speccand)
Esempio n. 7
0
def clus_popmap(ltfile,
                maps,
                map_size,
                band,
                name,
                pixsize,
                fwhm,
                loz=None,
                superplot=0,
                savemaps=0):

    # read in the image.dat file
    ra = []
    dec = []
    mag = []
    with open(ltfile, 'r') as f:
        data = f.readlines()
        for i in range(len(data)):
            val = data[i].strip().split(' ')
            if i == 0:
                racent = float(val[-2])
                deccent = float(val[-1])
            else:
                ra.append(float(val[1]))
                dec.append(float(val[2]))
                mag.append(float(val[-1]))
    f.close()

    # if len(loz) == 8 :
    #     ra = [ra,loz['x']]
    #     dec = [dec,loz['y']]

    refx = float(racent)
    refy = float(deccent)

    # convert ra/dec to degrees
    ra = [((-x / 3600.0) + refx) for x in ra]
    dec = [((y / 3600.0) + refy) for y in dec]
    flux = [10.0**(-k / 2.5) for k in mag]

    # if len(loz) == 8 :
    #     flux = [flux,loz['f']]

    if superplot:
        plt.scatter(ra, dec, s=2, c=flux)
        plt.colorbar()
        plt.title('Clus Popmap: Pixels')
        plt.show()

    header = maps['shead']
    wcs = WCS(header)
    coords = SkyCoord(ra=ra * u.deg, dec=dec * u.deg)
    x, y = skycoord_to_pixel(coords, wcs)

    truthtable = {'x': x, 'y': y, 'flux': flux}

    if superplot:
        plt.scatter(x, y, s=2, c=flux)
        plt.colorbar()
        plt.title('Clus Popmap: Skycoord')
        plt.show()

    # make the output map to have noise added later
    # xf = np.floor(x)
    # yf = np.floor(y)
    # cmap = np.zeros((map_size,map_size),dtype=np.float32)
    # nx, ny = cmap.shape
    # np.place(xf, xf > nx-1, nx-1)
    # np.place(yf, yf > ny-1, ny-1)
    # for cx, cy, cf in zip(xf, yf, flux):
    #     cmap[int(cy), int(cx)] += cf  # Note transpose
    #
    # beam = get_gauss_beam(fwhm,pixsize,band,oversamp=5)
    # sim_map = convolve(cmap, beam, boundary='wrap')
    ''' PCAT LION METHOD'''
    orig_length = len(x)
    position_mask = np.logical_and(np.logical_and(x > 0, x < map_size),
                                   np.logical_and(y > 0, y < map_size))
    x = np.array(x, dtype=np.float32)[position_mask]
    y = np.array(y, dtype=np.float32)[position_mask]
    flux = np.array(flux, dtype=np.float32)[position_mask]

    psf, cf, nc, nbin = get_gaussian_psf_template(
        fwhm, pixel_fwhm=3.)  # assumes pixel fwhm is 3 pixels in each band
    sim_map = image_model_eval(x, y, nc * flux, 0.0,
                               (int(map_size), int(map_size)), int(nc), cf)
    '''#############################################################################################################'''

    if superplot:
        plt.imshow(sim_map,
                   extent=(0, 300, 0, 300),
                   clim=[0.0, 0.15],
                   origin=0)
        plt.colorbar()
        plt.title('Clus Popmap: Lensed map')
        plt.show()

    if savemaps:
        hdx = fits.PrimaryHDU(maps['signal'], maps['shead'])
        sz = fits.PrimaryHDU(sim_map, hdx.header)
        if os.path.isfile(config.SIMBOX + 'lensedmap_' + name + '_' + band +
                          '.fits'):
            os.remove(config.SIMBOX + 'lensedmap_' + name + '_' + band +
                      '.fits')
        sz.writeto(config.SIMBOX + 'lensedmap_' + name + '_' + band + '.fits')

    return sim_map, truthtable