def detect_pnet(pnet, im, thresh, min_face_size=200, scale_factor=0.709):
    h, w, c = im.shape
    net_size = 12

    current_scale = float(net_size) / min_face_size

    im_resized = resize_image(im, current_scale)

    current_height, current_width, _ = im_resized.shape

    all_boxes = list()
    while min(current_height, current_width) > net_size:
        feed_imgs = []
        image_tensor = image_tools.convert_image_to_tensor(im_resized)
        feed_imgs.append(image_tensor)
        feed_imgs = torch.stack(feed_imgs)
        feed_imgs = feed_imgs.float().cuda()

        cls_map, reg = pnet(feed_imgs)  # (batch, 2, h, w), (batch, 4*2, h, w)
        cls_map = torch.sigmoid(cls_map)
        # remove the batch dimension, for batch is always 1 for inference.
        cls_probability = cls_map.cpu().numpy()[0]
        reg_np = reg.cpu().numpy()[0]

        boxes = generate_bounding_box(cls_probability.transpose(1, 2, 0),
                                      reg_np.transpose(1, 2, 0), current_scale,
                                      thresh)  # num, 10

        if len(boxes) != 0:
            all_boxes.append(boxes)

        current_scale *= scale_factor
        im_resized = resize_image(im, current_scale)
        current_height, current_width, _ = im_resized.shape

    if len(all_boxes) == 0:
        return None, None

    all_boxes = np.concatenate(all_boxes, axis=0)

    bw = all_boxes[:, 2] - all_boxes[:, 0] + 1
    bh = all_boxes[:, 3] - all_boxes[:, 1] + 1

    align_topx = all_boxes[:, 0] + all_boxes[:, 4] * bw
    align_topy = all_boxes[:, 1] + all_boxes[:, 5] * bh
    align_bottomx = all_boxes[:, 2] + all_boxes[:, 6] * bw
    align_bottomy = all_boxes[:, 3] + all_boxes[:, 7] * bh

    # refine the boxes
    boxes_align = np.vstack([
        align_topx, align_topy, align_bottomx, align_bottomy, all_boxes[:, 8]
    ])

    boxes_align = boxes_align.T

    keep = nms(boxes_align, 0.5, 'Union')

    return boxes_align[keep]
Esempio n. 2
0
def train_pnet(annotation_file,
               model_store_path,
               end_epoch=30,
               batch_size=512,
               frequent=100,
               base_lr=0.001,
               use_cuda=True):

    imagedb = ImageDB(annotation_file)
    gt_imdb = imagedb.load_imdb()  # imdb is a list of dict

    gt_imdb = imagedb.append_flipped_images(gt_imdb)

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    net = PNet()
    net.train()

    if use_cuda:
        net.cuda()

    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data = TrainImageReader(gt_imdb, 12, batch_size, shuffle=True)

    lossfn = LossFn()

    for cur_epoch in range(1, end_epoch + 1):
        train_data.reset()
        face_accuracy_list = []
        mask_accuracy_list = []
        cls_loss_list = []
        bbox_loss_list = []

        for batch_idx, (image, (gt_label, gt_bbox,
                                gt_landmark)) in enumerate(train_data):

            im_tensor = [
                image_tools.convert_image_to_tensor(image[i, ...])
                for i in range(image.shape[0])
            ]
            im_tensor = torch.stack(im_tensor)
            im_tensor = Variable(im_tensor.float())

            gt_label = Variable(torch.from_numpy(gt_label).float())
            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()

            conf_logits, box_offset_pred = net(im_tensor)

            cls_loss = lossfn.cls_loss(gt_label, conf_logits)
            box_offset_loss = lossfn.box_loss(gt_label, gt_bbox,
                                              box_offset_pred)

            all_loss = cls_loss * 1.0 + box_offset_loss * 0.5

            if batch_idx % frequent == 0:
                tn, tp, num_neg, num_pos = metric_hit(
                    torch.sigmoid(conf_logits), gt_label)
                c_loss = cls_loss.data.cpu().numpy()
                b_loss = box_offset_loss.data.cpu().numpy()
                a_loss = all_loss.data.cpu().numpy()

                # print("Epoch: %d, Step: %d, face_hit: %.4f, mask_hit: %.4f, neg_hit: %.4f, cls loss: %s, bbox loss: %s, all_loss: %s, lr:%s " \
                #     %(cur_epoch,batch_idx, tp[0], tp[1], tn, c_loss, b_loss, a_loss, base_lr))

                print("Epoch: %d, Step: %d, pos_hit: %.4f, neg_hit: %.4f, cls loss: %s, bbox loss: %s, all_loss: %s, lr:%s " \
                    %(cur_epoch,batch_idx, tp, tn, c_loss, b_loss, a_loss, base_lr))

                # face_accuracy_list.append(tp[0])
                # mask_accuracy_list.append(tp[1])
                cls_loss_list.append(c_loss)
                bbox_loss_list.append(b_loss)

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        # face_avg = np.mean(face_accuracy_list)
        # mask_avg = np.mean(mask_accuracy_list)

        cls_loss_avg = np.mean(cls_loss_list)
        bbox_loss_avg = np.mean(bbox_loss_list)

        print("Epoch: %d, cls loss: %s, bbox loss: %s" %
              (cur_epoch, cls_loss_avg, bbox_loss_avg))
        torch.save(
            net.state_dict(),
            os.path.join(model_store_path, "pnet_epoch_%d.pth" % cur_epoch))
Esempio n. 3
0
    def detect_onet(self, im, dets):
        """Get face candidates using onet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of rnet

        Returns:
        -------
        boxes_align: numpy array
            boxes after calibration
        landmarks_align: numpy array
            landmarks after calibration

        """
        h, w, c = im.shape

        if dets is None:
            return None, None

        dets = self.square_bbox(dets)
        dets[:, 0:4] = np.round(dets[:, 0:4])

        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]

        # cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
        cropped_ims_tensors = []
        for i in range(num_boxes):
            tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
            # crop input image
            tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1,
                                                            x[i]:ex[i] + 1, :]
            crop_im = cv2.resize(tmp, (48, 48))
            crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
            # cropped_ims_tensors[i, :, :, :] = crop_im_tensor
            cropped_ims_tensors.append(crop_im_tensor)
        feed_imgs = Variable(torch.stack(cropped_ims_tensors))

        if self.rnet_detector.use_cuda:
            feed_imgs = feed_imgs.cuda()

        cls_map, reg, landmark = self.onet_detector(feed_imgs)

        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()
        landmark = landmark.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[2])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]
            landmark = landmark[keep_inds]
        else:
            return None, None

        keep = core_utils.nms(boxes, 0.7, mode="Minimum")

        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]
        keep_landmark = landmark[keep]

        bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
        bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1

        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        align_landmark_topx = keep_boxes[:, 0]
        align_landmark_topy = keep_boxes[:, 1]

        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            keep_cls[:, 0],
            # align_topx + keep_landmark[:, 0] * bw,
            # align_topy + keep_landmark[:, 1] * bh,
            # align_topx + keep_landmark[:, 2] * bw,
            # align_topy + keep_landmark[:, 3] * bh,
            # align_topx + keep_landmark[:, 4] * bw,
            # align_topy + keep_landmark[:, 5] * bh,
            # align_topx + keep_landmark[:, 6] * bw,
            # align_topy + keep_landmark[:, 7] * bh,
            # align_topx + keep_landmark[:, 8] * bw,
            # align_topy + keep_landmark[:, 9] * bh,
        ])

        boxes_align = boxes_align.T

        landmark = np.vstack([
            align_landmark_topx + keep_landmark[:, 0] * bw,
            align_landmark_topy + keep_landmark[:, 1] * bh,
            align_landmark_topx + keep_landmark[:, 2] * bw,
            align_landmark_topy + keep_landmark[:, 3] * bh,
            align_landmark_topx + keep_landmark[:, 4] * bw,
            align_landmark_topy + keep_landmark[:, 5] * bh,
            align_landmark_topx + keep_landmark[:, 6] * bw,
            align_landmark_topy + keep_landmark[:, 7] * bh,
            align_landmark_topx + keep_landmark[:, 8] * bw,
            align_landmark_topy + keep_landmark[:, 9] * bh,
        ])

        landmark_align = landmark.T

        return boxes_align, landmark_align
Esempio n. 4
0
    def detect_rnet(self, im, dets):
        """Get face candidates using rnet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of pnet

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """
        # im: an input image
        h, w, c = im.shape

        if dets is None:
            return None, None

        # (705, 5) = [x1, y1, x2, y2, score, reg]
        # print("pnet detection {0}".format(dets.shape))
        # time.sleep(5)

        # return square boxes
        dets = self.square_bbox(dets)
        # rounds
        dets[:, 0:4] = np.round(dets[:, 0:4])

        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]
        '''
        # helper for setting RNet batch size
        batch_size = self.rnet_detector.batch_size
        ratio = float(num_boxes) / batch_size
        if ratio > 3 or ratio < 0.3:
            print "You may need to reset RNet batch size if this info appears frequently, \
        face candidates:%d, current batch_size:%d"%(num_boxes, batch_size)
        '''

        # cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
        cropped_ims_tensors = []
        for i in range(num_boxes):
            tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
            tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1,
                                                            x[i]:ex[i] + 1, :]
            crop_im = cv2.resize(tmp, (24, 24))
            crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
            # cropped_ims_tensors[i, :, :, :] = crop_im_tensor
            cropped_ims_tensors.append(crop_im_tensor)
        feed_imgs = Variable(torch.stack(cropped_ims_tensors))

        if self.rnet_detector.use_cuda:
            feed_imgs = feed_imgs.cuda()

        cls_map, reg = self.rnet_detector(feed_imgs)

        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()
        # landmark = landmark.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[1])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]
            # landmark = landmark[keep_inds]
        else:
            return None, None

        keep = core_utils.nms(boxes, 0.7)

        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]
        # keep_landmark = landmark[keep]

        bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
        bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1

        boxes = np.vstack([
            keep_boxes[:, 0],
            keep_boxes[:, 1],
            keep_boxes[:, 2],
            keep_boxes[:, 3],
            keep_cls[:, 0],
            # keep_boxes[:,0] + keep_landmark[:, 0] * bw,
            # keep_boxes[:,1] + keep_landmark[:, 1] * bh,
            # keep_boxes[:,0] + keep_landmark[:, 2] * bw,
            # keep_boxes[:,1] + keep_landmark[:, 3] * bh,
            # keep_boxes[:,0] + keep_landmark[:, 4] * bw,
            # keep_boxes[:,1] + keep_landmark[:, 5] * bh,
            # keep_boxes[:,0] + keep_landmark[:, 6] * bw,
            # keep_boxes[:,1] + keep_landmark[:, 7] * bh,
            # keep_boxes[:,0] + keep_landmark[:, 8] * bw,
            # keep_boxes[:,1] + keep_landmark[:, 9] * bh,
        ])

        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            keep_cls[:, 0],
            # align_topx + keep_landmark[:, 0] * bw,
            # align_topy + keep_landmark[:, 1] * bh,
            # align_topx + keep_landmark[:, 2] * bw,
            # align_topy + keep_landmark[:, 3] * bh,
            # align_topx + keep_landmark[:, 4] * bw,
            # align_topy + keep_landmark[:, 5] * bh,
            # align_topx + keep_landmark[:, 6] * bw,
            # align_topy + keep_landmark[:, 7] * bh,
            # align_topx + keep_landmark[:, 8] * bw,
            # align_topy + keep_landmark[:, 9] * bh,
        ])

        boxes = boxes.T
        boxes_align = boxes_align.T

        return boxes, boxes_align
Esempio n. 5
0
    def detect_pnet(self, im):
        """Get face candidates through pnet

        Parameters:
        ----------
        im: numpy array
            input image array
            one batch

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """

        # im = self.unique_image_format(im)

        # original wider face data
        h, w, c = im.shape

        net_size = 12

        current_scale = float(
            net_size) / self.min_face_size  # find initial scale
        # print('imgshape:{0}, current_scale:{1}'.format(im.shape, current_scale))
        im_resized = self.resize_image(im, current_scale)  # scale = 1.0
        current_height, current_width, _ = im_resized.shape

        # fcn
        all_boxes = list()
        i = 0
        while min(current_height, current_width) > net_size:
            # print(i)
            feed_imgs = []
            image_tensor = image_tools.convert_image_to_tensor(im_resized)
            feed_imgs.append(image_tensor)
            feed_imgs = torch.stack(feed_imgs)
            feed_imgs = Variable(feed_imgs)

            if self.pnet_detector.use_cuda:
                feed_imgs = feed_imgs.cuda()

            # self.pnet_detector is a trained pnet torch model

            # receptive field is 12×12
            # 12×12 --> score
            # 12×12 --> bounding box
            cls_map, reg = self.pnet_detector(feed_imgs)

            cls_map_np = image_tools.convert_chwTensor_to_hwcNumpy(
                cls_map.cpu())
            reg_np = image_tools.convert_chwTensor_to_hwcNumpy(reg.cpu())
            # print(cls_map_np.shape, reg_np.shape) # cls_map_np = (1, n, m, 1) reg_np.shape = (1, n, m 4)
            # time.sleep(5)
            # landmark_np = image_tools.convert_chwTensor_to_hwcNumpy(landmark.cpu())

            # self.threshold[0] = 0.6
            # print(cls_map_np[0,:,:].shape)
            # time.sleep(4)

            # boxes = [x1, y1, x2, y2, score, reg]
            boxes = self.generate_bounding_box(cls_map_np[0, :, :], reg_np,
                                               current_scale, self.thresh[0])

            # generate pyramid images
            current_scale *= self.scale_factor  # self.scale_factor = 0.709
            im_resized = self.resize_image(im, current_scale)
            current_height, current_width, _ = im_resized.shape

            if boxes.size == 0:
                continue

            # non-maximum suppresion
            keep = core_utils.nms(boxes[:, :5], 0.5, 'Union')
            boxes = boxes[keep]
            # print(boxes.shape)
            all_boxes.append(boxes)
            # i+=1

        if len(all_boxes) == 0:
            return None, None

        all_boxes = np.vstack(all_boxes)
        # print("shape of all boxes {0}".format(all_boxes.shape))
        # time.sleep(5)

        # merge the detection from first stage
        keep = core_utils.nms(all_boxes[:, 0:5], 0.7, 'Union')
        all_boxes = all_boxes[keep]
        # boxes = all_boxes[:, :5]

        # x2 - x1
        # y2 - y1
        bw = all_boxes[:, 2] - all_boxes[:, 0] + 1
        bh = all_boxes[:, 3] - all_boxes[:, 1] + 1

        # landmark_keep = all_boxes[:, 9:].reshape((5,2))

        boxes = np.vstack([
            all_boxes[:, 0],
            all_boxes[:, 1],
            all_boxes[:, 2],
            all_boxes[:, 3],
            all_boxes[:, 4],
            # all_boxes[:, 0] + all_boxes[:, 9] * bw,
            # all_boxes[:, 1] + all_boxes[:,10] * bh,
            # all_boxes[:, 0] + all_boxes[:, 11] * bw,
            # all_boxes[:, 1] + all_boxes[:, 12] * bh,
            # all_boxes[:, 0] + all_boxes[:, 13] * bw,
            # all_boxes[:, 1] + all_boxes[:, 14] * bh,
            # all_boxes[:, 0] + all_boxes[:, 15] * bw,
            # all_boxes[:, 1] + all_boxes[:, 16] * bh,
            # all_boxes[:, 0] + all_boxes[:, 17] * bw,
            # all_boxes[:, 1] + all_boxes[:, 18] * bh
        ])

        boxes = boxes.T

        # boxes = boxes = [x1, y1, x2, y2, score, reg] reg= [px1, py1, px2, py2] (in prediction)
        align_topx = all_boxes[:, 0] + all_boxes[:, 5] * bw
        align_topy = all_boxes[:, 1] + all_boxes[:, 6] * bh
        align_bottomx = all_boxes[:, 2] + all_boxes[:, 7] * bw
        align_bottomy = all_boxes[:, 3] + all_boxes[:, 8] * bh

        # refine the boxes
        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            all_boxes[:, 4],
            # align_topx + all_boxes[:,9] * bw,
            # align_topy + all_boxes[:,10] * bh,
            # align_topx + all_boxes[:,11] * bw,
            # align_topy + all_boxes[:,12] * bh,
            # align_topx + all_boxes[:,13] * bw,
            # align_topy + all_boxes[:,14] * bh,
            # align_topx + all_boxes[:,15] * bw,
            # align_topy + all_boxes[:,16] * bh,
            # align_topx + all_boxes[:,17] * bw,
            # align_topy + all_boxes[:,18] * bh,
        ])
        boxes_align = boxes_align.T

        return boxes, boxes_align
Esempio n. 6
0
    def detect_pnet(self, im):
        """Get face candidates through pnet

        Parameters:
        ----------
        im: numpy array
            input image array

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """

        # im = self.unique_image_format(im)

        h, w, c = im.shape
        net_size = 12

        current_scale = float(
            net_size) / self.min_face_size  # find initial scale
        im_resized = self.resize_image(im, current_scale)
        current_height, current_width, _ = im_resized.shape

        # fcn
        all_boxes = list()
        while min(current_height, current_width) > net_size:
            feed_imgs = []
            image_tensor = image_tools.convert_image_to_tensor(im_resized)
            feed_imgs.append(image_tensor)
            feed_imgs = torch.stack(feed_imgs)
            feed_imgs = Variable(feed_imgs)

            if self.pnet_detector.use_cuda:
                feed_imgs = feed_imgs.cuda()

            cls_map, reg = self.pnet_detector(feed_imgs)

            cls_map_np = image_tools.convert_chwTensor_to_hwcNumpy(
                cls_map.cpu())
            reg_np = image_tools.convert_chwTensor_to_hwcNumpy(reg.cpu())
            # landmark_np = image_tools.convert_chwTensor_to_hwcNumpy(landmark.cpu())

            boxes = self.generate_bounding_box(cls_map_np[0, :, :], reg_np,
                                               current_scale, self.thresh[0])

            current_scale *= self.scale_factor
            im_resized = self.resize_image(im, current_scale)
            current_height, current_width, _ = im_resized.shape

            if boxes.size == 0:
                continue
            keep = utils.nms(boxes[:, :5], 0.5, 'Union')
            boxes = boxes[keep]
            all_boxes.append(boxes)

        if len(all_boxes) == 0:
            return None, None

        all_boxes = np.vstack(all_boxes)

        # merge the detection from first stage
        keep = utils.nms(all_boxes[:, 0:5], 0.7, 'Union')
        all_boxes = all_boxes[keep]
        # boxes = all_boxes[:, :5]

        bw = all_boxes[:, 2] - all_boxes[:, 0] + 1
        bh = all_boxes[:, 3] - all_boxes[:, 1] + 1

        # landmark_keep = all_boxes[:, 9:].reshape((5,2))

        boxes = np.vstack([
            all_boxes[:, 0],
            all_boxes[:, 1],
            all_boxes[:, 2],
            all_boxes[:, 3],
            all_boxes[:, 4],
            # all_boxes[:, 0] + all_boxes[:, 9] * bw,
            # all_boxes[:, 1] + all_boxes[:,10] * bh,
            # all_boxes[:, 0] + all_boxes[:, 11] * bw,
            # all_boxes[:, 1] + all_boxes[:, 12] * bh,
            # all_boxes[:, 0] + all_boxes[:, 13] * bw,
            # all_boxes[:, 1] + all_boxes[:, 14] * bh,
            # all_boxes[:, 0] + all_boxes[:, 15] * bw,
            # all_boxes[:, 1] + all_boxes[:, 16] * bh,
            # all_boxes[:, 0] + all_boxes[:, 17] * bw,
            # all_boxes[:, 1] + all_boxes[:, 18] * bh
        ])

        boxes = boxes.T

        align_topx = all_boxes[:, 0] + all_boxes[:, 5] * bw
        align_topy = all_boxes[:, 1] + all_boxes[:, 6] * bh
        align_bottomx = all_boxes[:, 2] + all_boxes[:, 7] * bw
        align_bottomy = all_boxes[:, 3] + all_boxes[:, 8] * bh

        # refine the boxes
        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            all_boxes[:, 4],
            # align_topx + all_boxes[:,9] * bw,
            # align_topy + all_boxes[:,10] * bh,
            # align_topx + all_boxes[:,11] * bw,
            # align_topy + all_boxes[:,12] * bh,
            # align_topx + all_boxes[:,13] * bw,
            # align_topy + all_boxes[:,14] * bh,
            # align_topx + all_boxes[:,15] * bw,
            # align_topy + all_boxes[:,16] * bh,
            # align_topx + all_boxes[:,17] * bw,
            # align_topy + all_boxes[:,18] * bh,
        ])
        boxes_align = boxes_align.T

        return boxes, boxes_align
Esempio n. 7
0
def train_pnet(model_store_path,
               end_epoch,
               imdb,
               batch_size,
               frequent=10,
               base_lr=0.01,
               use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = PNet(is_train=True, use_cuda=use_cuda)
    net.train()

    if use_cuda:
        net.cuda()
    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data = TrainImageReader(imdb, 12, batch_size, shuffle=True)

    frequent = 10
    for cur_epoch in range(1, end_epoch + 1):
        train_data.reset()  # shuffle

        for batch_idx, (image, (gt_label, gt_bbox,
                                gt_landmark)) in enumerate(train_data):

            im_tensor = [
                image_tools.convert_image_to_tensor(image[i, :, :, :])
                for i in range(image.shape[0])
            ]
            im_tensor = torch.stack(im_tensor)

            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            # gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                # gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred = net(im_tensor)
            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label, cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label, gt_bbox,
                                              box_offset_pred)
            # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)

            all_loss = cls_loss * 1.0 + box_offset_loss * 0.5

            if batch_idx % frequent == 0:
                accuracy = compute_accuracy(cls_pred, gt_label)

                show1 = accuracy.data.cpu().numpy()
                show2 = cls_loss.data.cpu().numpy()
                show3 = box_offset_loss.data.cpu().numpy()
                # show4 = landmark_loss.data.cpu().numpy()
                show5 = all_loss.data.cpu().numpy()

                print(
                    "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "
                    % (datetime.datetime.now(), cur_epoch, batch_idx, show1,
                       show2, show3, show5, base_lr))

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        torch.save(
            net.state_dict(),
            os.path.join(model_store_path, "pnet_epoch_%d.pt" % cur_epoch))
        torch.save(
            net,
            os.path.join(model_store_path,
                         "pnet_epoch_model_%d.pkl" % cur_epoch))