Esempio n. 1
0
def detectCarplate(cv_image=None, pil_image=None, image_path=None, threshold_method='otsu'):
	'''
	wrapped method to get the result of a car plate
	pseudo:
		convert into cv_image
		then find contours
		process the image into threshold image (only binary color)
		foreach contour image:
		    put into the network
		    save in an array
		sort the array (optional)
		convert to string and return the string
	:param cv_image: image in cv2 form (numpy)
	:param pil_image: image in pil form (Image)
	:param image_path: image path (str)
	:param threshold_method: (best threshold so far)
	:return: a string of car plate number
	'''
	if cv_image is None and pil_image is None and image_path is None:
		raise Exception('one of them must not be None')
	number = 1
	if threshold_method == 'normal':
		number = 2
	if threshold_method == 'normal-otsu':
		number = 3
	if cv_image is not None:
		result = ''
		img = resize(cv_image, 320)
		result_character = findContours(img, number)
		if number == 1:
			currentImg = ip2.preprocessOtsuThreshold(img)
		elif number == 2:
			currentImg = ip2.preprocessWithThreshold(img)
		else:
			currentImg = ip2.preprocessWithThreshold(ip2.preprocessWithThreshold(img))
		for character in result_character: #type: cu.Character
			x, y, w, h = character.boundingRect
			blurredImage = ip2.gaussianBlur(
				ip2.resizeWithSize(ip2.addBorder(ip2.addPadding(currentImg[y:y+h, x:x+w]), 8), (32, 32)), 3)
			caffe_image = singleimage.cv2caffe(blurredImage)
			character.index, character.score = singleimage.getProb(net, caffe_image)
			character.score = character.score[0][character.index]

		result_character = sortresult.sortCarplateResult(result_character)
		for character in result_character:
			result += singleimage.convertIndex(character.index)
			cv2.imwrite('test/'+str(character.index)+'-'+str(character.identity)+'.png', character.getImage(img))

		if len(result) <= 4 and number == 1:
			return detectCarplate(cv_image, threshold_method='normal-otsu')
		elif len(result) <= 4 and number == 3:
			return detectCarplate(cv_image, threshold_method='normal')
		elif len(result) <= 4 and number == 2:
			return result

		return result
	elif pil_image is not None:
		return detectCarplate(cv_image=ip2.PIL2CVImage(pil_image), threshold_method=threshold_method)
	else:
		return detectCarplate(cv_image=cv2.imread(image_path), threshold_method=threshold_method)
Esempio n. 2
0
def eliminateNonMaybe(ori_img, maybeCharacter, total, min_thresh, number, display=None):
	if number is 1:
		thresh_img = ip2.preprocessOtsuThreshold(ori_img)
	elif number is 2:
		thresh_img = ip2.preprocessWithThreshold(ori_img, min_thresh)
	else:
		thresh_img = ip2.preprocessOtsuThreshold(ip2.preprocessWithThreshold(ori_img))
	cu.normalChecking(thresh_img, ori_img, total, 150, display)
	for t in total.getArray():
		if display is not None:
			ip2.drawRect(display, t.boundingRect, MAGENTA)
		maybeCharacter.append(t)
    def compute(self, thresh=150, selection=1):
        ori_path = self.ori_path
        if ori_path == '':
            return

        save_path = 'temp.png'
        compare1_img = None
        compare2_img = None
        compare3_img = None
        if selection == 1:
            compare1_img = ip2.preprocessWithThreshold(
                resize(cv2.imread(ori_path), 320), thresh)
            compare3_img = ip2.preprocessWithSpecialThresh(
                resize(cv2.imread(ori_path), 320), thresh)
        if selection == 1 or selection == 2:
            compare2_img = ip2.erodePreprocessThreshold(
                resize(cv2.imread(ori_path), 320), thresh, self.sliderValue)
            print 'enter here'

        if compare1_img is not None:
            cv2.imwrite(save_path, compare1_img)
            self.compare1.setPixmap(QtGui.QPixmap(QtCore.QString(save_path)))

        cv2.imwrite(save_path, compare2_img)
        self.compare2.setPixmap(QtGui.QPixmap(QtCore.QString(save_path)))

        if compare3_img is not None:
            cv2.imwrite(save_path, compare3_img)
            self.compare3.setPixmap(QtGui.QPixmap(QtCore.QString(save_path)))
Esempio n. 4
0
def recursiveChecking(thresh_img, ori_img, min_thresh, total, offset_x, offset_y):
	if min_thresh <= 180:
		contours, hierarchy = ip2.findContours(thresh_img)
		for cnt in contours:
			char = Character(cnt)
			if char.isMaybeSize():
				if char.aspectRatio >= MAX_ASPECTRATIO:
					crop_img = ori_img[char.y:char.y+char.h, char.x:char.x+char.w]
					crop_img = cc.inRangeOfWhite(crop_img)
					new_thresh_img = ip2.preprocessWithThreshold(crop_img, min_thresh+10)
					recursiveChecking(new_thresh_img, crop_img, min_thresh+10, total, offset_x+char.x, offset_y+char.y)
				else:
					char.setXY(offset_x+char.x, offset_y+char.y)
					# char.increaseSize()
					total.__add__(char)
Esempio n. 5
0
def guiRun(file, number):
	'''
	used by gui
	:param file: image path
	:param number: threshold method, 1-'otsu' 2-'threshold' 3-'normal-otsu'
	:return:
	'''
	img = cv2.imread(file)
	if img is not None:
		img = resize(img, 320)
		cv2.imwrite('gui/resize.png', img)
		# display = img.copy()
		characters = findContours(img, number)
		greyscale = ip2.greyscale(img)
		white = cc.newInRangeOfWhite(img)
		threshold = ip2.preprocessWithThreshold(img)
		threshold_otsu = ip2.preprocessOtsuThreshold(img)
		otsu_normal = ip2.preprocessOtsuThreshold(threshold)
		if number == 1:
			contoursImage = threshold_otsu.copy()
			currentImage = threshold_otsu.copy()
		elif number == 2:
			contoursImage = threshold.copy()
			currentImage = threshold.copy()
		else:
			contoursImage = otsu_normal.copy()
			currentImage = otsu_normal.copy()

		contoursImage = ip2.colour(contoursImage)
		indices = []
		scores = []
		for cnt in characters: #type: cu.Character
			x, y, w, h = cnt.boundingRect
			ip2.drawRect(contoursImage, (x, y, w, h), ip2.RED)
			cv_image = ip2.resizeWithSize(ip2.addBorder(ip2.addPadding(currentImage[y:y+h, x:x+w]), 8), (32, 32))
			caffe_image = singleimage.cv2caffe(cv_image)
			prob, score = singleimage.getProb(net, caffe_image)
			cnt.index = int(prob)
			cnt.score = score[0][prob]
			indices.append(int(prob))
			scores.append(score[0][prob])

		# indices, scores = sortResultv2(characters, indices, scores)
		characters = sortresult.sortCarplateResult(characters)
		carplate_str = ''
		for cnt in characters:
			carplate_str += singleimage.convertIndex(cnt.index)

		if len(carplate_str) <= 4 and number == 1:
			return guiRun(file, 3)
		elif len(carplate_str) <= 4 and number == 3:
			return guiRun(file, 2)

		cv2.imwrite('gui/greyscale.png', greyscale)
		cv2.imwrite('gui/white.png', white)
		cv2.imwrite('gui/threshold.png', threshold)
		cv2.imwrite('gui/threshold_otsu.png', threshold_otsu)
		cv2.imwrite('gui/otsu_normal.png', otsu_normal)
		cv2.imwrite('gui/contours.png', contoursImage)
		cv2.imwrite('gui/current.png', currentImage)
		return carplate_str, characters, scores

	else:
		return '', None