Esempio n. 1
0
    ppol_mask = np.loadtxt(os.path.join(base_path, "ppol_mask.txt"))

    # Create bootstrap ROTM images with calculated mask
    rotm_images_list = list()
    for i in range(1, n_boot + 1):
        images = Images()
        for band in bands:
            for stoke in stokes:
                map_path = im_fits_path(source,
                                        band,
                                        epoch,
                                        stoke,
                                        base_path=base_path)
                fname = os.path.join(map_path, "cc_{}.fits".format(i))
                images.add_from_fits(fnames=[fname])
        rotm_image, s_rotm_image = images.create_rotm_image(mask=ppol_mask)
        rotm_images_list.append(rotm_image)

    # Stack ROTM images
    rotm_images_boot = Images()
    rotm_images_boot.add_images(rotm_images_list)
    fig = plt.figure()
    for image in rotm_images_boot.images:
        plt.plot(np.arange(500, 550, 1), image.slice((550, 500), (550, 550)),
                 '.k')

    # Plot I, ROTM image
    i_path = im_fits_path(source, bands[-1], epoch, 'i', base_path=base_path)
    i_image = create_clean_image_from_fits_file(
        os.path.join(i_path, 'cc_orig.fits'))
    # Create original ROTM image
Esempio n. 2
0
def analyze_source(uv_fits_paths,
                   n_boot,
                   imsizes=None,
                   common_imsize=None,
                   common_beam=None,
                   find_shifts=False,
                   outdir=None,
                   path_to_script=None,
                   clear_difmap_logs=True,
                   rotm_slices=None):
    """
    Function that uses multifrequency self-calibration data for in-depth
    analysis.

    :param uv_fits_paths:
        Iterable of paths to self-calibrated uv-data FITS-files.
    :param n_boot:
        Number of bootstrap replications to use in analysis.
    :param imsizes: (optional)
        Iterable of image parameters (imsize, pixsize) that should be used for
        CLEANing of uv-data if no CLEAN-images are supplied. Should be sorted in
        increasing frequency order. If ``None`` then specify parameters by CLEAN
        images. (default: ``None``)
    :param common_imsize: (optional)
        Image parameters that will be used in making common size images for
        multifrequency analysis. If ``None`` then use physical image size of
        lowest frequency and pixel size of highest frequency. (default:
        ``None``)
    :param outdir: (optional)
        Output directory. This directory will be used for saving picture, data,
        etc. If ``None`` then use CWD. (default: ``None``)
    :param path_to_script: (optional)
        Path ot difmap CLEAN script. If ``None`` then use CWD. (default:
        ``None``)

    :notes:
        Workflow:
        1) Чистка с родным разрешением всех N диапазонов и получение родных
        моделей I, Q, U.
        2) Выбор общей ДН из N возможных
        3) (Опционально) Выбор uv-tapering
        4) Чистка uv-данных для всех диапазонов с (опционально применяемым
            uv-tapering) общей ДН
        5) Оценка сдвига ядра
        6) Создание B наборов из N многочастотных симулированных данных
            используя родные модели
        7) (Опционально) Чистка B наборов из N многочастотных симданных с
            родным разрешением для получения карт ошибок I для каждой из N
            частот
        8) Чистка B наборов из N многочастотных симданных для всех диапазонов с
            (опционально применяемым uv-tapering) общей ДН
        9) Оценка ошибки определения сдвига ядра
        10) Оценка RM и ее ошибки
        11) Оценка alpha и ее ошибки

    """

    # Fail early
    if imsizes is None:
        raise Exception("Provide imsizes argument!")
    if common_imsize is not None:
        print("Using common image size {}".format(common_imsize))
    else:
        raise Exception("Provide common_imsize argument!")

    # Setting up the output directory
    if outdir is None:
        outdir = os.getcwd()
    print("Using output directory {}".format(outdir))
    os.chdir(outdir)

    # Assume input self-calibrated uv-data FITS files have different frequencies
    n_freq = len(uv_fits_paths)
    print("Using {} frequencies".format(n_freq))

    # Assuming full multifrequency analysis
    stokes = ('I', 'Q', 'U')

    # Container for original self-calibrated uv-data
    uv_data_dict = dict()
    # Container for original self-calibrated uv-data FITS-file paths
    uv_fits_dict = dict()
    for uv_fits_path in uv_fits_paths:
        uvdata = UVData(uv_fits_path)
        # Mark frequencies by total band center [Hz] for consistency with image.
        uv_data_dict.update({uvdata.band_center: uvdata})
        uv_fits_dict.update({uvdata.band_center: uv_fits_path})

    # Lowest frequency goes first
    freqs = sorted(uv_fits_dict.keys())
    print("Frequencies are: {}".format(freqs))
    # Assert we have original map parameters for all frequencies
    assert len(imsizes) == n_freq

    # Container for original CLEAN-images of self-calibrated uv-data
    cc_image_dict = dict()
    # Container for paths to FITS-files with original CLEAN-images of
    # self-calibrated uv-data
    cc_fits_dict = dict()
    # Container for original CLEAN-image's beam parameters
    cc_beam_dict = dict()
    for freq in freqs:
        cc_image_dict.update({freq: dict()})
        cc_fits_dict.update({freq: dict()})
        cc_beam_dict.update({freq: dict()})

    # 1.
    # Clean original uv-data with specified map parameters
    print("1. Clean original uv-data with specified map parameters...")
    imsizes_dict = dict()
    for i, freq in enumerate(freqs):
        imsizes_dict.update({freq: imsizes[i]})
    for freq in freqs:
        uv_fits_path = uv_fits_dict[freq]
        uv_dir, uv_fname = os.path.split(uv_fits_path)
        for stoke in stokes:
            outfname = '{}_{}_cc.fits'.format(freq, stoke)
            outpath = os.path.join(outdir, outfname)
            clean_difmap(uv_fname,
                         outfname,
                         stoke,
                         imsizes_dict[freq],
                         path=uv_dir,
                         path_to_script=path_to_script,
                         outpath=outdir)
            cc_fits_dict[freq].update({stoke: os.path.join(outdir, outfname)})
            image = create_clean_image_from_fits_file(outpath)
            cc_image_dict[freq].update({stoke: image})
            if stoke == 'I':
                cc_beam_dict.update({freq: image.beam})

    # Containers for images and paths to FITS files with common size images
    cc_cs_image_dict = dict()
    cc_cs_fits_dict = dict()
    # 2.
    # Choose common beam size
    print("2. Choosing common beam size...")
    if common_beam is None:
        common_beam = cc_beam_dict[freqs[0]]
    print("Using common beam [mas, mas, deg] : {}".format(common_beam))

    # 3.
    # Optionally uv-tapering uv-data
    print("3. Optionally uv-tapering uv-data...")
    print("skipping...")

    # 4.
    # Clean original uv-data with common map parameters
    print("4. Clean original uv-data with common map parameters...")
    for freq in freqs:
        cc_cs_image_dict.update({freq: dict()})
        cc_cs_fits_dict.update({freq: dict()})

        uv_fits_path = uv_fits_dict[freq]
        uv_dir, uv_fname = os.path.split(uv_fits_path)
        for stoke in stokes:
            outfname = 'cs_{}_{}_cc.fits'.format(freq, stoke)
            outpath = os.path.join(outdir, outfname)
            # clean_difmap(uv_fname_cc, outfname, stoke, common_imsize,
            #              path=uv_dir, path_to_script=path_to_script,
            #              outpath=outdir, show_difmap_output=False)
            cc_cs_fits_dict[freq].update(
                {stoke: os.path.join(outdir, outfname)})
            image = create_image_from_fits_file(outpath)
            cc_cs_image_dict[freq].update({stoke: image})

    # 5.
    # Optionally find shifts between original CLEAN-images
    print("5. Optionally find shifts between original CLEAN-images...")
    if find_shifts:
        print("Determining images shift...")
        shift_dict = dict()
        freq_1 = freqs[0]
        image_1 = cc_image_dict[freq_1]['I']

        for freq_2 in freqs[1:]:
            image_2 = cc_image_dict[freq_2]['I']
            # Coarse grid of possible shifts
            shift = find_shift(image_1,
                               image_2,
                               100,
                               5,
                               max_mask_r=200,
                               mask_step=5)
            # More accurate grid of possible shifts
            print("Using fine grid for accurate estimate")
            coarse_grid = range(0, 100, 5)
            idx = coarse_grid.index(shift)
            if idx > 0:
                min_shift = coarse_grid[idx - 1]
            else:
                min_shift = 0
            shift = find_shift(image_1,
                               image_2,
                               coarse_grid[idx + 1],
                               1,
                               min_shift=min_shift,
                               max_mask_r=200,
                               mask_step=5)

            shift_dict.update({str((
                freq_1,
                freq_2,
            )): shift})

        # Dumping shifts to json file in target directory
        with open(os.path.join(outdir, "shifts_original.json"), 'w') as fp:
            json.dump(shift_dict, fp)
    else:
        print("skipping...")

    # 6.
    # Bootstrap self-calibrated uv-data with CLEAN-models
    print("6. Bootstrap self-calibrated uv-data with CLEAN-models...")
    uv_boot_fits_dict = dict()
    for freq, uv_fits_path in uv_fits_dict.items():
        # cc_fits_paths = [cc_fits_dict[freq][stoke] for stoke in stokes]
        # bootstrap_uv_fits(uv_fits_path, cc_fits_paths, n_boot, outpath=outdir,
        #                   outname=('boot_{}'.format(freq), '_uv.fits'))
        files = glob.glob(os.path.join(outdir, 'boot_{}*.fits'.format(freq)))
        uv_boot_fits_dict.update({freq: sorted(files)})

    # 7.
    # Optionally clean bootstrap replications with original restoring beams and
    # map sizes to get error estimates for original resolution maps of I, PPOL,
    # FPOL, ...
    print(
        "7. Optionally clean bootstrap replications with original restoring"
        " beams and map sizes...")
    print("skipping...")

    # 8.
    # Optionally clean bootstrap replications with common restoring beams and
    # map sizes
    print(
        "8. Optionally clean bootstrap replications with common restoring"
        " beams and map sizes...")
    cc_boot_fits_dict = dict()
    for freq in freqs:
        cc_boot_fits_dict.update({freq: dict()})
        uv_fits_paths = uv_boot_fits_dict[freq]
        for stoke in stokes:
            for i, uv_fits_path in enumerate(uv_fits_paths):
                uv_dir, uv_fname = os.path.split(uv_fits_path)
                outfname = 'boot_{}_{}_cc_{}.fits'.format(
                    freq, stoke,
                    str(i + 1).zfill(3))
                # clean_difmap(uv_fname_cc, outfname, stoke, common_imsize,
                #              path=uv_dir, path_to_script=path_to_script,
                #              outpath=outdir, show_difmap_output=False)
            files = sorted(
                glob.glob(
                    os.path.join(outdir,
                                 'boot_{}_{}_cc_*.fits'.format(freq, stoke))))
            cc_boot_fits_dict[freq].update({stoke: files})

    # 9. Optionally estimate RM map and it's error
    print("9. Optionally estimate RM map and it's error...")
    original_cs_images = Images()
    for freq in freqs:
        for stoke in stokes:
            original_cs_images.add_images(cc_cs_image_dict[freq][stoke])

    # Find rough mask for creating bootstrap images of RM, alpha, ...
    print("Finding rough mask for creating bootstrap images of RM, alpha, ...")
    cs_mask = pol_mask(
        {stoke: cc_cs_image_dict[freqs[-1]][stoke]
         for stoke in stokes},
        n_sigma=3.)

    rotm_image, _ = original_cs_images.create_rotm_image(mask=cs_mask)

    boot_images = Images()
    fnames = sorted(glob.glob(os.path.join(data_dir, "boot_*_*_cc_*.fits")))
    for freq in freqs:
        for stoke in stokes:
            boot_images.add_from_fits(cc_boot_fits_dict[freq][stoke])
    boot_rotm_images = boot_images.create_rotm_images(mask=cs_mask)
    s_rotm_image = boot_rotm_images.create_error_image(cred_mass=0.95)

    if rotm_slices is not None:
        fnames = [
            'rotm_slice_spread_{}.png'.format(i + 1)
            for i in range(len(rotm_slices))
        ]
        for rotm_slice, fname in zip(rotm_slices, fnames):
            analyze_rotm_slice(rotm_slice,
                               rotm_image,
                               boot_rotm_images,
                               outdir=outdir,
                               outfname=fname)

    # # Calculate simulataneous confidence bands
    # # Bootstrap slices
    # slices = list()
    # for image in rotm_images_sym.images:
    #     slice_ = image.slice((216, 276), (296, 276))
    #     slices.append(slice_[~np.isnan(slice_)])

    # # Find means
    # obs_slice = rotm_image_sym.slice((216, 276), (296, 276))
    # x = np.arange(216, 296, 1)
    # x = x[~np.isnan(obs_slice)]
    # obs_slice = obs_slice[~np.isnan(obs_slice)]
    # # Find sigmas
    # slices_ = [arr.reshape((1, len(obs_slice))) for arr in slices]
    # sigmas = hdi_of_arrays(slices_).squeeze()
    # means = np.mean(np.vstack(slices), axis=0)
    # diff = obs_slice - means
    # # Move bootstrap curves to original simulated centers
    # slices_ = [slice_ + diff for slice_ in slices]
    # # Find low and upper confidence band
    # low, up = create_sim_conf_band(slices_, obs_slice, sigmas,
    #                                alpha=conf_band_alpha)

    # # Plot confidence bands and model values
    # fig = plt.figure()
    # ax = fig.add_subplot(1, 1, 1)
    # ax.plot(x, low[::-1], 'g')
    # ax.plot(x, up[::-1], 'g')
    # [ax.plot(x, slice_[::-1], 'r', lw=0.15) for slice_ in slices_]
    # ax.plot(x, obs_slice[::-1], '.k')
    # # Plot ROTM model
    # ax.plot(np.arange(216, 296, 1),
    #         rotm_grad_value * (np.arange(216, 296, 1) - 256.)[::-1] +
    #         rotm_value_0)
    # fig.savefig(os.path.join(data_dir, 'rotm_slice_spread.png'),
    #             bbox_inches='tight', dpi=200)
    # plt.close()

    if clear_difmap_logs:
        print("Removing difmap log-files...")
        difmap_logs = glob.glob(os.path.join(outdir, "difmap.log*"))
        for difmpa_log in difmap_logs:
            os.unlink(difmpa_log)