Esempio n. 1
0
        cv2.imshow(f"Contour {index}", clone)
    wait_and_destroy_all_windows()


def show_external_contours(image, image_gray):
    clone = image.copy()
    contours = get_contours(image_gray, cv2.RETR_EXTERNAL)
    cv2.drawContours(clone, contours, -1, (0, 255, 0), 2)
    cv2.imshow("External contours", clone)
    wait_and_destroy_all_windows()


def show_contour_masking(image, image_gray):
    contours = get_contours(image_gray, cv2.RETR_EXTERNAL)
    for idx, contour in enumerate(contours):
        mask = np.zeros(image_gray.shape, dtype="uint8")
        cv2.drawContours(mask, [contour], -1, (255), -1)
        cv2.imshow("Original", image)
        cv2.imshow("Mask", mask)
        cv2.imshow(f"Masked contours: {idx}",
                   cv2.bitwise_and(image, image, mask=mask))
        wait_and_destroy_all_windows()


image, image_gray = image_with_gray_arg()
contours = get_contours(image_gray, cv2.RETR_LIST)
show_all_contours(image, contours)
show_each_contour(image, contours)
show_external_contours(image, image_gray)
show_contour_masking(image, image_gray)
Esempio n. 2
0

def show_2d_br_histogram(figure, image, channels):
    ax = figure.add_subplot(133)
    hist = cv2.calcHist([channels[0], channels[2]], [0, 1], None, [32, 32],
                        [0, 256, 0, 256])
    p = ax.imshow(hist, interpolation="nearest")
    plt.colorbar(p)
    plt.xlabel("B")
    plt.ylabel("R")
    ax.set_title("BR Histogram")
    print(f"BR 2D Histogram shape: {hist.shape}, {hist.flatten().shape[0]}")


def compute_3d_histogram(image, channels):
    hist = cv2.calcHist(channels, [0, 1, 2], None, [8, 16, 9],
                        [0, 256, 0, 256, 0, 256])
    print(f"3d histogram shape: {hist.shape}, "
          f"with {hist.flatten().shape[0]} values")


image, gray_image = image_with_gray_arg()
channels = cv2.split(image)
cv2.imshow("Original", image)
show_bgr_histogram(image, channels)
fig = plt.figure()
show_2d_gb_histogram(fig, image, channels)
show_2d_gr_histogram(fig, image, channels)
show_2d_br_histogram(fig, image, channels)
compute_3d_histogram(image, channels)
plt.show()
Esempio n. 3
0
import cv2
import matplotlib
matplotlib.use('macosx')
from matplotlib import pyplot as plt
from imageutils import image_with_gray_arg


def plot_histogram(histogram, name, y_label):
    plt.figure()
    plt.title(name)
    plt.xlabel("Bins")
    plt.ylabel(y_label)
    plt.plot(hist)
    plt.xlim([0, 256])


image, image_grayscale = image_with_gray_arg()
hist = cv2.calcHist([image_grayscale], [0], None, [256], [0, 256])
cv2.imshow("Grayscale", image_grayscale)
plot_histogram(hist, "Grayscale Unnormalized Histogram", "# of pixels")
hist /= hist.sum()
plot_histogram(hist, "Grayscale L1-Normalized Histogram", "% of pixels")
plt.show()