def getBoutDur(mice, eventType, behType, trials):
    """
        DEPRICATED: Needs major revision!
    """
    print "DEPRICATED: Needs major revision!"
    # Load the data
    dataList = loadData(mice)

    # Load the events
    fileList = loopMice(mice, behType)
    eventList = getBeh(mice, fileList['Behaviour'], behType)

    durationData = pd.DataFrame()
    for mus, sess in mice:
        # Find the events
        boutDur = np.array([])
        startList = eventList[mus][eventType[0]].dropna().values
        endList = eventList[mus][eventType[1]].dropna().values
        for i in range(trials[0] - 1, trials[1]):
            ind, start = find_nearest(dataList[mus].index.values, startList[i])
            ind, end = find_nearest(dataList[mus].index.values, endList[i])
            boutDur = np.append(boutDur, end - start)

        durationData[mus] = boutDur

    durationData.set_index(np.arange(trials[0], trials[1] + 1), inplace=True)

    return durationData
Esempio n. 2
0
    import matplotlib.patches as mpatches
    from imagingIO import loopMice
    from trials import markTrials
    from analysis import dffCalc, filtData, smoothData, normData

    # Start running the analysis
    mice = [(8404, 6), (8857, 3), (8864, 1)]
    behType = 'FR1'
    fs = 0.05
    base = -5.0
    duration = 30
    trials=[1,12]

    # Locate the files
    fileList = loopMice(mice, behType)
    # Load the events
    eventList = getBeh(mice, fileList['Behaviour'], behType)
    # Load the data
    dataList = loadData(mice, behType)
    # dFF and plot again
    filtList = filtData(mice, dffCalc(mice, dataList, lowest=False), cutoff=5.0, order=6)
    dFFList = smoothData(mice, filtList, window=4)

    eventType = 'Eat_Start'
    eventsData = markTrials(mice, dataList, base=base, duration=duration, eventType=eventType, behType=behType, trials=trials, baselining=True)

    sem=eventsData.pivot_table(index=['Event', 'Cell'], columns='New_Time').sem()
    time = np.arange(base,duration,fs)

    print len(sem), len(time)