Esempio n. 1
0
def test_column_fit():
    """Fit a Gaussian1D column to the data."""
    plots = Imexamine()
    plots.set_data(test_data)
    fit = plots.column_fit(50, 50, form='Gaussian1D', genplot=False)
    amp = 2.8285560281694115
    mean = 49.42625526973088
    stddev = 12.791137635400535

    assert_allclose(amp, fit.amplitude, 1e-6)
    assert_allclose(mean, fit.mean, 1e-6)
    assert_allclose(stddev, fit.stddev, 1e-6)
Esempio n. 2
0
def test_column_fit():
    """Fit a Gaussian1D column to the data."""
    plots = Imexamine()
    plots.set_data(test_data)
    fit = plots.column_fit(50, 50, form='Gaussian1D', genplot=False)
    amp = 2.8285560281694115
    mean = 49.42625526973088
    stddev = 12.791137635400535

    assert_allclose(amp, fit.amplitude, 1e-6)
    assert_allclose(mean, fit.mean, 1e-6)
    assert_allclose(stddev, fit.stddev, 1e-6)
Esempio n. 3
0
def test_column_fit():
    """Fit a Gaussian1D column to the data."""
    plots = Imexamine()
    in_amp = 3.
    in_mean = 50.
    in_stddev = 2.
    in_const = 20.
    # Set all the columns to be Gaussians
    col_gauss = in_const + in_amp * np.exp(-0.5 * ((yy - in_mean) / in_stddev)**2)
    plots.set_data(col_gauss)
    fit = plots.column_fit(50, 50, form='Gaussian1D', genplot=False)

    assert_allclose(in_amp, fit.amplitude_0, 1e-6)
    assert_allclose(in_mean, fit.mean_0, 1e-6)
    assert_allclose(in_stddev, fit.stddev_0, 1e-6)
    assert_allclose(in_const, fit.c0_1, 1e-6)
Esempio n. 4
0
def test_column_fit():
    """Fit a Gaussian1D column to the data."""
    plots = Imexamine()
    in_amp = 3.
    in_mean = 50.
    in_stddev = 2.
    in_const = 20.
    # Set all the columns to be Gaussians
    col_gauss = in_const + in_amp * np.exp(-0.5 * ((yy - in_mean) / in_stddev)**2)
    plots.set_data(col_gauss)
    fit = plots.column_fit(50, 50, form='Gaussian1D', genplot=False)

    assert_allclose(in_amp, fit.amplitude_0, 1e-6)
    assert_allclose(in_mean, fit.mean_0, 1e-6)
    assert_allclose(in_stddev, fit.stddev_0, 1e-6)
    assert_allclose(in_const, fit.c0_1, 1e-6)
Esempio n. 5
0
    region_name = sorted(rfile.glob('indiir1_*.coo'))
    plots = Imexamine()

    for names, stars in zip(images, region_name):
        data = fits.getdata(names)
        plots.set_data(data)
        starlist = ascii.read(stars, data_start=3)
        plots.line_fit_pars['func'] = ['Moffat1D']
        plots.column_fit_pars['func'] = ['Moffat1D']
        results = dict()
        yresults = dict()
        for star in starlist:

            sid, x, y, a4, a5, a6, a7 = star
            moff = plots.line_fit(x, y, genplot=False)
            ymoff = plots.column_fit(x, y, genplot=False)
            #            print(moff)
            results[x] = mfwhm(alpha=moff.alpha_0, gamma=moff.gamma_0)
            yresults[y] = mfwhm(alpha=ymoff.alpha_0, gamma=ymoff.gamma_0)
            #            gresults[x] = gfwhm(moff.stddev_0)[0]
            #            gyresults[y] = gfwhm(ymoff.stddev_0)[1]
            print(names, np.median(list(results.values())),
                  np.median(list(yresults.values())))
#        plt.figure()
#        plt.subplot(121)
#        plt.hist(yresults.values(), bins='auto', alpha=.7, range=(3.,7.5))
#        plt.hist(results.values(), bins='auto', alpha=.7, range=(3.,7.5))

#        plt.subplot(122)
#       plt.hist(gyresults.values(), bins='auto', alpha=.7, range=(3.,7.5))
#       plt.hist(gresults.values(), bins='auto', alpha=.7, range=(3.,7.5))