Esempio n. 1
0
def check_box_and_cropface(orig_img_path, channel_first=False):

    cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_box(
        orig_img_path, channel_first=channel_first, mc_manager=None)

    AU_couple = get_zip_ROI_AU()
    already_couple = set()
    # cropped_face = np.transpose(cropped_face, (2, 0, 1))
    # cropped_face, params = transforms.random_flip(
    #     cropped_face, x_random=True, return_param=True)
    # cropped_face = np.transpose(cropped_face, (1, 2, 0))
    i = 0
    for AU, box_ls in AU_mask_dict.items():
        current_AU_couple = AU_couple[AU]
        if current_AU_couple in already_couple:
            continue
        already_couple.add(current_AU_couple)
        for box in box_ls:
            box = np.asarray([box])
            box = transforms.flip_bbox(box, (512, 512), x_flip=False)
            x_min, y_min = box[0][1], box[0][0]
            x_max, y_max = box[0][3], box[0][2]
            print(box)
            cp_croped = cropped_face.copy()
            cv2.rectangle(cp_croped, (x_min, y_min), (x_max, y_max),
                          (0, 255, 0), 1)

            cv2.imwrite(
                "/home2/mac/test1/AU_{0}_{1}.png".format(
                    ",".join(current_AU_couple), i), cp_croped)
            i += 1
    print(i)
Esempio n. 2
0
def delegate_mask_crop(img_path, channal_first, queue):
    try:
        cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
            img_path, channal_first)
        print("crop {} done".format(img_path))
        queue.put((img_path, cropped_face, AU_mask_dict), block=True)
    except IndexError:
        pass
Esempio n. 3
0
    def get_example(self, i):
        rgb_path, flow_path, AU_set, database_name = self.result_data[i]
        video_seq_id = self.extract_sequence_key(rgb_path)
        # note that batch now is mix of T and batch_size, we must be reshape later
        try:
            rgb_face, flow_face, bbox, label = self.AU_image_dataset.get_from_entry(
                flow_path, rgb_path, AU_set, database_name)
            assert bbox.shape[0] == label.shape[0]
            if bbox.shape[0] != config.BOX_NUM[database_name]:
                print("found one error image: {0} box_number:{1}".format(
                    rgb_path, bbox.shape[0]))
                bbox = bbox.tolist()
                label = label.tolist()

                if len(bbox) > config.BOX_NUM[database_name]:
                    all_del_idx = []
                    for idx, box in enumerate(bbox):
                        if FaceMaskCropper.calculate_area(*box) / float(
                                config.IMG_SIZE[0] *
                                config.IMG_SIZE[1]) < 0.01:
                            all_del_idx.append(idx)
                    for del_idx in all_del_idx:
                        del bbox[del_idx]
                        del label[del_idx]

                while len(bbox) < config.BOX_NUM[database_name]:
                    index = 0
                    bbox.insert(0, bbox[index])
                    label.insert(0, label[index])
                while len(bbox) > config.BOX_NUM[database_name]:
                    del bbox[-1]
                    del label[-1]

                bbox = np.stack(bbox)
                label = np.stack(label)
        except IndexError:
            print("image path : {} not get box".format(rgb_path))
            label = np.zeros(len(config.AU_SQUEEZE), dtype=np.int32)
            for AU in AU_set:
                np.put(label, config.AU_SQUEEZE.inv[AU], 1)
            if self.paper_report_label_idx:
                label = label[self.paper_report_label_idx]

            rgb_whole_image = np.transpose(
                cv2.resize(cv2.imread(rgb_path), config.IMG_SIZE), (2, 0, 1))
            flow_whole_image = np.transpose(
                cv2.resize(cv2.imread(flow_path), config.IMG_SIZE), (2, 0, 1))
            whole_bbox = np.tile(
                np.array(
                    [1, 1, config.IMG_SIZE[1] - 2, config.IMG_SIZE[0] - 2],
                    dtype=np.float32), (config.BOX_NUM[database_name], 1))
            whole_label = np.tile(label, (config.BOX_NUM[database_name], 1))
            return rgb_whole_image, flow_whole_image, whole_bbox, whole_label, rgb_path

        assert bbox.shape[0] == config.BOX_NUM[database_name], bbox.shape[0]
        if self.paper_report_label_idx:
            label = label[:, self.paper_report_label_idx]
        return rgb_face, flow_face, bbox, label, rgb_path
Esempio n. 4
0
def generate_AUCouple_ROI_mask_image(database_name, img_path):
    adaptive_AU_database(database_name)
    global MASK_COLOR

    mask_color_lst = []
    for color in MASK_COLOR:
        mask_color_lst.append(color_bgr(color))
    cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
        img_path, channel_first=False)
    AU_couple_dict = get_zip_ROI_AU()

    land = FaceLandMark(config.DLIB_LANDMARK_PRETRAIN)
    landmark, _, _ = land.landmark(image=cropped_face)
    roi_polygons = land.split_ROI(landmark)
    for roi_no, polygon_vertex_arr in roi_polygons.items():
        polygon_vertex_arr[0, :] = np.round(polygon_vertex_arr[0, :])
        polygon_vertex_arr[1, :] = np.round(polygon_vertex_arr[1, :])
        polygon_vertex_arr = sort_clockwise(polygon_vertex_arr.tolist())
        cv2.polylines(cropped_face, [polygon_vertex_arr],
                      True,
                      color_bgr(RED),
                      thickness=1)
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(cropped_face,
                    str(roi_no),
                    tuple(
                        np.mean(polygon_vertex_arr, axis=0).astype(np.int32)),
                    font,
                    0.7, (0, 255, 255),
                    thickness=1)
    already_fill_AU = set()
    idx = 0
    gen_face_lst = dict()
    AU_couple_mask = dict()
    for AU in config.AU_ROI.keys():
        AU_couple = AU_couple_dict[AU]
        if AU_couple in already_fill_AU:
            continue
        already_fill_AU.add(AU_couple)
        mask = AU_mask_dict[AU]
        AU_couple_mask[AU_couple] = mask
        color_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)

        color_mask[mask != 0] = random.choice(mask_color_lst)
        idx += 1
        new_face = cv2.addWeighted(cropped_face, 0.75, color_mask, 0.25, 0)
        gen_face_lst[AU_couple] = new_face
    return gen_face_lst, AU_couple_mask
Esempio n. 5
0
    def get_example(self, i):
        '''
        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        :param i:  the index of the example
        :return: tuple of an image and its all bounding box
        '''
        if i > len(self.result_data):
            raise IndexError("Index too large")
        img_path, from_img_path, AU_set, database_name = self.result_data[i]

        if not os.path.exists(img_path):
            raise IndexError("image file_path: {} not exist!".format(img_path))
        read_img_path = img_path if from_img_path == "#" else from_img_path
        rgb_img_path = config.RGB_PATH[
            database_name] + os.path.sep + os.path.sep.join(
                read_img_path.split("/")[-3:])

        flow_img_path = config.FLOW_PATH[
            database_name] + os.path.sep + os.path.sep.join(
                read_img_path.split("/")[-3:])
        key_prefix = self.database + "@{0}".format(self.img_resolution) + "|"
        if self.pretrained_target is not None and len(
                self.pretrained_target) > 0:
            key_prefix = self.pretrained_target + "|"
        if self.read_type == "rgb":
            read_img_path = rgb_img_path
        elif self.read_type == "flow":
            read_img_path = flow_img_path
        try:
            cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
                read_img_path,
                read_img_path,
                channel_first=True,
                mc_manager=self.mc_manager,
                key_prefix=key_prefix)
        except IndexError:
            print("error in crop face: {}".format(read_img_path))
            cropped_face = cv2.imread(read_img_path, cv2.IMREAD_COLOR)
            cropped_face = cv2.resize(cropped_face, config.IMG_SIZE)
            cropped_face = np.transpose(cropped_face, axes=(2, 0, 1))
        label = np.zeros(shape=len(config.AU_SQUEEZE), dtype=np.int32)

        for AU in AU_set:
            if AU in config.AU_SQUEEZE.inv:
                label[config.AU_SQUEEZE.inv[AU]] = 1
        return cropped_face, label
Esempio n. 6
0
    def generate_AUCouple_ROI_mask_image(self, database_name, img_path,
                                         roi_activate):
        adaptive_AU_database(database_name)

        cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
            img_path, channel_first=False)
        AU_couple_dict = get_zip_ROI_AU()

        land = FaceLandMark(config.DLIB_LANDMARK_PRETRAIN)
        landmark, _, _ = land.landmark(image=cropped_face)
        roi_polygons = land.split_ROI(landmark)
        for roi_no, polygon_vertex_arr in roi_polygons.items():
            polygon_vertex_arr[0, :] = np.round(polygon_vertex_arr[0, :])
            polygon_vertex_arr[1, :] = np.round(polygon_vertex_arr[1, :])
            polygon_vertex_arr = sort_clockwise(polygon_vertex_arr.tolist())
            cv2.polylines(cropped_face, [polygon_vertex_arr],
                          True, (0, 0, 255),
                          thickness=1)
            font = cv2.FONT_HERSHEY_SIMPLEX
            cv2.putText(cropped_face,
                        str(roi_no),
                        tuple(
                            np.mean(polygon_vertex_arr,
                                    axis=0).astype(np.int32)),
                        font,
                        0.7, (0, 255, 255),
                        thickness=1)
        already_fill_AU = set()
        AUCouple_face_dict = dict()
        for AU in config.AU_ROI.keys():
            AU_couple = AU_couple_dict[AU]
            if AU_couple in already_fill_AU or AU_couple not in roi_activate:
                continue
            already_fill_AU.add(AU_couple)
            mask = AU_mask_dict[AU]
            color_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
            color_mask[mask != 0] = (199, 21, 133)
            new_face = cv2.add(cropped_face, color_mask)
            AUCouple_face_dict[AU_couple] = new_face

        return AUCouple_face_dict
def collect_box_coordinate(image_path, mc_manager, database):
    au_couple_dict = get_zip_ROI_AU()
    AU_group_box_coodinate = defaultdict(list)  # AU_group => box_list
    key_prefix = database + "@512|"
    try:
        cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
            image_path,
            image_path,
            channel_first=True,
            mc_manager=mc_manager,
            key_prefix=key_prefix)
    except IndexError:
        return AU_group_box_coodinate
    for AU, box_list in AU_box_dict.items():
        AU_couple = au_couple_dict[AU]
        if AU_couple in AU_group_box_coodinate:
            continue
        new_box_list = [list(box) for box in box_list]
        new_box_list.sort(key=lambda e: e[1])
        AU_group_box_coodinate[AU_couple].extend(new_box_list)
    return AU_group_box_coodinate
Esempio n. 8
0
def stats_AU_group_area(image_path, mc_manager, database):
    au_couple_dict = get_zip_ROI_AU()
    AU_group_box_area = dict()
    key_prefix = database + "|"
    try:
        cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
            image_path,
            image_path,
            channel_first=True,
            mc_manager=mc_manager,
            key_prefix=key_prefix)
    except IndexError:
        return AU_group_box_area
    for AU, box_list in AU_box_dict.items():
        AU_couple = au_couple_dict[AU]
        tot_area = 0.
        for box in box_list:
            y_min, x_min, y_max, x_max = box
            area = (x_max - x_min) * (y_max - y_min)
            tot_area += area
        tot_area /= len(box_list)
        AU_group_box_area[AU_couple] = tot_area
    return AU_group_box_area
Esempio n. 9
0
def generate_mask_contain_img(database_name, img_path):
    adaptive_AU_database(database_name)
    mask_color = {}
    for parent_color, child_color in MASK_CONTAIN.items():
        mask_color[color_bgr(parent_color)] = color_bgr(child_color)
    cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
        img_path, channel_first=False)

    AU_couple_dict = get_zip_ROI_AU()
    AU_couple_child = get_AU_couple_child(AU_couple_dict)
    land = FaceLandMark(config.DLIB_LANDMARK_PRETRAIN)
    landmark, _, _ = land.landmark(image=cropped_face)
    roi_polygons = land.split_ROI(landmark)
    for roi_no, polygon_vertex_arr in roi_polygons.items():
        polygon_vertex_arr[0, :] = np.round(polygon_vertex_arr[0, :])
        polygon_vertex_arr[1, :] = np.round(polygon_vertex_arr[1, :])
        polygon_vertex_arr = sort_clockwise(polygon_vertex_arr.tolist())
        cv2.polylines(cropped_face, [polygon_vertex_arr],
                      True,
                      color_bgr(RED),
                      thickness=1)
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(cropped_face,
                    str(roi_no),
                    tuple(
                        np.mean(polygon_vertex_arr, axis=0).astype(np.int32)),
                    font,
                    0.7, (0, 255, 255),
                    thickness=1)
    already_fill_AU = set()
    gen_face_lst = dict()
    all_child_set = set()
    for child_set in AU_couple_child.values():
        for child in child_set:
            all_child_set.add(child)
    new_face = np.zeros_like(cropped_face)
    for AU in config.AU_ROI.keys():
        AU_couple = AU_couple_dict[AU]
        if AU_couple in all_child_set:
            continue
        if AU_couple in already_fill_AU:
            continue
        already_fill_AU.add(AU_couple)
        mask = AU_mask_dict[AU]
        child_AU_set = AU_couple_child[AU_couple]
        color_parent = list(MASK_CONTAIN.keys())[0]
        color_child = MASK_CONTAIN[color_parent]
        color_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)

        color_mask[mask != 0] = color_parent
        # cv2.addWeighted(color_mask,0.5,  color_mask,1-0.5,0,color_mask)
        if np.any(new_face):
            cropped_face = new_face
        cv2.addWeighted(cropped_face, 1, color_mask, 0.3, 0, new_face, -1)

        for child_AU in child_AU_set:
            if child_AU in already_fill_AU:
                continue
            already_fill_AU.add(child_AU)
            mask = AU_mask_dict[child_AU[0]]
            color_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
            color_mask[mask != 0] = random.choice(color_child)
            cv2.addWeighted(new_face, 1, color_mask, 0.5, 0, new_face, -1)

    return new_face
Esempio n. 10
0
    def get_example(self, i):
        '''
        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        :param i:  the index of the example
        :return: tuple of an image and its all bounding box
        '''
        if i > len(self.result_data):
            raise IndexError("Index too large")
        img_path, from_img_path, AU_intensity, database_name = self.result_data[
            i]
        if not os.path.exists(img_path):
            raise IndexError("image file_path: {} not exist!".format(img_path))
        try:
            # print("begin fetch cropped image and bbox {}".format(img_path))
            read_img_path = img_path if from_img_path == "#" else from_img_path
            rgb_img_path = config.RGB_PATH[
                self.database] + os.path.sep + os.path.sep.join(
                    read_img_path.split("/")[-3:])
            key_prefix = self.database + "@{}".format(
                self.img_resolution) + "|"
            if self.pretrained_target is not None and len(
                    self.pretrained_target) > 0:
                key_prefix = self.pretrained_target + "|"

            cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
                read_img_path,
                rgb_img_path,
                channel_first=True,
                mc_manager=self.mc_manager,
                key_prefix=key_prefix)
        except IndexError:
            print("crop image error:{}".format(img_path))
            face = np.transpose(
                cv2.resize(cv2.imread(img_path), config.IMG_SIZE), (2, 0, 1))
            whole_bbox = np.tile(
                np.array(
                    [1, 1, config.IMG_SIZE[1] - 1, config.IMG_SIZE[0] - 1],
                    dtype=np.float32), (config.BOX_NUM[database_name], 1))
            whole_label = np.tile(AU_intensity,
                                  (config.BOX_NUM[database_name], 1))
            return face, whole_bbox, whole_label

        current_AU_couple = defaultdict(
            dict)  # key = AU couple, value = {出现的AU: intensity}
        couple_box_dict = OrderedDict()  # key= AU couple

        for idx, intensity in enumerate(AU_intensity):
            AU = str(config.AU_INTENSITY_DICT[idx])
            if intensity > 0:
                try:
                    current_AU_couple[self.au_couple_dict[AU]][AU] = intensity
                except KeyError:
                    print(list(self.au_couple_dict.keys()), AU)
                    raise
        for AU, box_list in sorted(AU_box_dict.items(),
                                   key=lambda e: int(e[0])):
            AU = str(AU)
            couple_box_dict[
                self.au_couple_dict[AU]] = box_list  # 所以这一步会把脸上有的,没有的AU都加上
        label = [
        ]  # one box may have multiple labels. so each entry is 10101110 binary code
        bbox = []  # AU = 0背景的box是随机取的
        self.assign_label(couple_box_dict, current_AU_couple, bbox, label)
        bbox = np.stack(bbox).astype(np.float32)
        label = np.stack(label).astype(np.int32)
        assert bbox.shape[0] == label.shape[0]
        return cropped_face, bbox, label
Esempio n. 11
0
def main():
    parser = argparse.ArgumentParser(
        description='Space Time Action Unit R-CNN training example:')
    parser.add_argument('--pid', '-pp', default='/tmp/SpaceTime_AU_R_CNN/')
    parser.add_argument('--gpu',
                        '-g',
                        nargs='+',
                        type=int,
                        help='GPU ID, multiple GPU split by space')
    parser.add_argument('--lr', '-l', type=float, default=0.001)
    parser.add_argument('--out',
                        '-o',
                        default='end_to_end_result',
                        help='Output directory')
    parser.add_argument('--trainval', default='train', help='train/test')
    parser.add_argument('--database',
                        default='BP4D',
                        help='Output directory: BP4D/DISFA/BP4D_DISFA')
    parser.add_argument('--iteration', '-i', type=int, default=70000)
    parser.add_argument('--epoch', '-e', type=int, default=20)
    parser.add_argument('--batch_size', '-bs', type=int, default=1)
    parser.add_argument('--snapshot', '-snap', type=int, default=1000)
    parser.add_argument('--need_validate',
                        action='store_true',
                        help='do or not validate during training')
    parser.add_argument('--mean',
                        default=config.ROOT_PATH +
                        "BP4D/idx/mean_no_enhance.npy",
                        help='image mean .npy file')
    parser.add_argument('--backbone',
                        default="mobilenet_v1",
                        help="vgg/resnet101/mobilenet_v1 for train")
    parser.add_argument('--optimizer',
                        default='RMSprop',
                        help='optimizer: RMSprop/AdaGrad/Adam/SGD/AdaDelta')
    parser.add_argument('--pretrained_model',
                        default='mobilenet_v1',
                        help='imagenet/mobilenet_v1/resnet101/*.npz')
    parser.add_argument('--pretrained_model_args',
                        nargs='+',
                        type=float,
                        help='you can pass in "1.0 224" or "0.75 224"')
    parser.add_argument('--spatial_edge_mode',
                        type=SpatialEdgeMode,
                        choices=list(SpatialEdgeMode),
                        help='1:all_edge, 2:configure_edge, 3:no_edge')
    parser.add_argument(
        '--temporal_edge_mode',
        type=TemporalEdgeMode,
        choices=list(TemporalEdgeMode),
        help='1:rnn, 2:attention_block, 3.point-wise feed forward(no temporal)'
    )
    parser.add_argument("--bi_lstm",
                        action="store_true",
                        help="whether to use bi-lstm as Edge/Node RNN")
    parser.add_argument(
        '--use_memcached',
        action='store_true',
        help='whether use memcached to boost speed of fetch crop&mask')  #
    parser.add_argument('--memcached_host', default='127.0.0.1')
    parser.add_argument("--fold", '-fd', type=int, default=3)
    parser.add_argument("--layers", type=int, default=1)
    parser.add_argument("--split_idx", '-sp', type=int, default=1)
    parser.add_argument("--use_paper_num_label",
                        action="store_true",
                        help="only to use paper reported number of labels"
                        " to train")
    parser.add_argument("--previous_frame", type=int, default=50)
    parser.add_argument("--sample_frame", '-sample', type=int, default=25)
    parser.add_argument(
        "--snap_individual",
        action="store_true",
        help="whether to snapshot each individual epoch/iteration")
    parser.add_argument("--proc_num", "-proc", type=int, default=1)
    parser.add_argument('--eval_mode',
                        action='store_true',
                        help='Use test datasets for evaluation metric')
    args = parser.parse_args()
    os.makedirs(args.pid, exist_ok=True)
    os.makedirs(args.out, exist_ok=True)
    pid = str(os.getpid())
    pid_file_path = args.pid + os.sep + "{0}_{1}_fold_{2}.pid".format(
        args.database, args.fold, args.split_idx)
    with open(pid_file_path, "w") as file_obj:
        file_obj.write(pid)
        file_obj.flush()

    print('GPU: {}'.format(",".join(list(map(str, args.gpu)))))

    adaptive_AU_database(args.database)
    mc_manager = None
    if args.use_memcached:
        from collections_toolkit.memcached_manager import PyLibmcManager
        mc_manager = PyLibmcManager(args.memcached_host)
        if mc_manager is None:
            raise IOError("no memcached found listen in {}".format(
                args.memcached_host))

    train_data = AUDataset(
        database=args.database,
        fold=args.fold,
        split_name=args.trainval,
        split_index=args.split_idx,
        mc_manager=mc_manager,
        train_all_data=False,
    )
    result_data = [
        img_path
        for img_path, AU_set, current_database_name in train_data.result_data
        if args.database + "|" + img_path not in mc_manager
    ]
    sub_list = split_list(result_data, len(result_data) // 100)

    for img_path_lst in sub_list:
        with Pool(processes=50) as pool:
            input_list = [(img_path, None, None) for img_path in img_path_lst]
            result =\
                pool.starmap(parallel_landmark_and_conn_component, input_list)
            pool.close()
            pool.join()
            for img_path, AU_box_dict, landmark_dict, box_is_whole_image in result:
                key_prefix = args.database + "|"
                key = key_prefix + img_path
                orig_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
                new_face, rect = FaceMaskCropper.dlib_face_crop(
                    orig_img, landmark_dict)

                print("write {}".format(key))
                if mc_manager is not None and key not in mc_manager:
                    save_dict = {
                        "landmark_dict": landmark_dict,
                        "AU_box_dict": AU_box_dict,
                        "crop_rect": rect
                    }
                    mc_manager.set(key, save_dict)
Esempio n. 12
0
def main():
    parser = argparse.ArgumentParser(
        description='generate Graph desc file script')
    parser.add_argument('--mean',
                        default=config.ROOT_PATH + "BP4D/idx/mean_rgb.npy",
                        help='image mean .npy file')
    parser.add_argument("--image",
                        default='C:/Users/machen/Downloads/tmp/face.jpg')
    parser.add_argument(
        "--model", default="C:/Users/machen/Downloads/tmp/BP4D_3_fold_1.npz")
    parser.add_argument("--pretrained_model_name",
                        '-premodel',
                        default='resnet101')
    parser.add_argument('--database', default='BP4D', help='Output directory')
    parser.add_argument('--device',
                        default=0,
                        type=int,
                        help='GPU device number')
    args = parser.parse_args()
    adaptive_AU_database(args.database)

    if args.pretrained_model_name == "resnet101":
        faster_rcnn = FasterRCNNResnet101(
            n_fg_class=len(config.AU_SQUEEZE),
            pretrained_model="resnet101",
            mean_file=args.mean,
            use_lstm=False,
            extract_len=1000
        )  # 可改为/home/machen/face_expr/result/snapshot_model.npz
    elif args.pretrained_model_name == "vgg":
        faster_rcnn = FasterRCNNVGG16(n_fg_class=len(config.AU_SQUEEZE),
                                      pretrained_model="imagenet",
                                      mean_file=args.mean,
                                      use_lstm=False,
                                      extract_len=1000)

    if os.path.exists(args.model):
        print("loading pretrained snapshot:{}".format(args.model))
        chainer.serializers.load_npz(args.model, faster_rcnn)
    if args.device >= 0:
        faster_rcnn.to_gpu(args.device)
        chainer.cuda.get_device_from_id(int(args.device)).use()

    heatmap_gen = HeatMapGenerator(np.load(args.model), use_relu=True)
    if args.device >= 0:
        heatmap_gen.to_gpu(args.device)
    cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
        args.image, args.image, channel_first=True)
    au_couple_dict = get_zip_ROI_AU()
    au_couple_child = get_AU_couple_child(
        au_couple_dict)  # AU couple tuple => child fetch list
    au_couple_box = dict()  # value is box (4 tuple coordinate) list

    for AU, AU_couple in au_couple_dict.items():
        au_couple_box[AU_couple] = AU_box_dict[AU]
    box_lst = []
    roi_no_AU_couple_dict = dict()
    roi_no = 0
    for AU_couple, couple_box_lst in au_couple_box.items():
        box_lst.extend(couple_box_lst)
        for _ in couple_box_lst:
            roi_no_AU_couple_dict[roi_no] = AU_couple
            roi_no += 1

    box_lst = np.asarray(box_lst)
    cropped_face = cropped_face.astype(np.float32)
    orig_face = cropped_face
    cropped_face = faster_rcnn.prepare(
        cropped_face)  # substract mean pixel value
    box_lst = box_lst.astype(np.float32)
    orig_box_lst = box_lst
    batch = [
        (cropped_face, box_lst),
    ]
    cropped_face, box_lst = concat_examples(
        batch, args.device)  # N,3, H, W, ;  N, F, 4

    if box_lst.shape[1] != config.BOX_NUM[args.database]:
        print("error box num {0} != {1}".format(box_lst.shape[1],
                                                config.BOX_NUM[args.database]))
        return
    with chainer.no_backprop_mode(), chainer.using_config("train", False):
        cropped_face = chainer.Variable(cropped_face)
        box_lst = chainer.Variable(box_lst)
        roi_preds, _ = faster_rcnn.predict(cropped_face, box_lst)  # R, 22
        roi_feature_maps = faster_rcnn.extract(orig_face, orig_box_lst,
                                               'res5')  # R, 2048 7,7

        roi_images = []
        box_lst = box_lst[0].data.astype(np.int32)
        for box in box_lst:
            y_min, x_min, y_max, x_max = box
            roi_image = orig_face[:, y_min:y_max + 1,
                                  x_min:x_max + 1]  # N, 3, roi_H, roi_W
            roi_images.append(roi_image)  # list of  N, 3, roi_H, roi_W
        cmap = plt.get_cmap('jet')
        # image_activate_map = np.zeros((cropped_face.shape[2], cropped_face.shape[3]), dtype=np.float32)
        for box_id, (roi_image, roi_feature_map) in enumerate(
                zip(roi_images, roi_feature_maps)):
            y_min, x_min, y_max, x_max = box_lst[box_id]
            # 22, roi_h, roi_w, 3
            xp = chainer.cuda.get_array_module(roi_feature_map)
            roi_feature_map = xp.expand_dims(roi_feature_map, 0)
            #   class_roi_overlay_img = 22, roi_h, roi_w
            class_roi_activate_img = heatmap_gen.generate_activate_roi_map(
                roi_feature_map, (y_max - y_min + 1, x_max - x_min + 1))
            roi_pred = roi_preds[box_id]  # 22
            # choice_activate_map = np.zeros((y_max-y_min+1, x_max-x_min+1), dtype=np.float32)
            # use_choice = False
            if len(np.nonzero(roi_pred)
                   [0]) > 0:  # TODO : 还要做做 class的选择,以及 heatmap采用cv2.add的模式相加
                class_idx = random.choice(np.nonzero(roi_pred)[0])
                AU = config.AU_SQUEEZE[class_idx]
                print(AU)
                choice_activate_map = class_roi_activate_img[
                    class_idx]  # roi_h, roi_w
                activation_color_map = np.round(
                    cmap(choice_activate_map)[:, :, :3] * 255).astype(np.uint8)
                overlay_img = roi_images[
                    box_id] / 2 + activation_color_map.transpose(2, 0, 1) / 2
                overlay_img = np.transpose(overlay_img,
                                           (1, 2, 0)).astype(np.uint8)
                vis_img = cv2.cvtColor(overlay_img, cv2.COLOR_RGB2BGR)
                cv2.imshow("new", vis_img)
                cv2.waitKey(0)
Esempio n. 13
0
def read_DISFA_video_label(output_dir,
                           is_binary_AU,
                           is_need_adaptive_AU_relation=False,
                           force_generate=True,
                           proc_num=10,
                           cut=False,
                           train_subject=None):
    mgr = mp.Manager()
    queue = mgr.Queue(maxsize=20000)
    for orientation in ["Left", "Right"]:
        if is_need_adaptive_AU_relation:
            adaptive_AU_relation(
            )  # delete AU relation pair occur in same facial region
        au_couple_dict = get_zip_ROI_AU()
        au_couple_child_dict = get_AU_couple_child(au_couple_dict)
        DISFA_base_dir = config.DATA_PATH["DISFA"]
        label_file_dir = DISFA_base_dir + "/ActionUnit_Labels/"
        img_folder = DISFA_base_dir + "/Img_{}Camera".format(orientation)
        for video_name in os.listdir(label_file_dir):  # each file is a video
            is_train = True if video_name in train_subject else False
            if not force_generate:
                prefix = "train" if is_train else "test"
                target_file_path = output_dir + os.sep + prefix + os.sep + video_name + "_" + orientation + ".npz"
                if os.path.exists(target_file_path):
                    continue
            resultdict = {}
            if proc_num > 1:
                pool = mp.Pool(processes=proc_num)
                procs = 0
                one_file_name = os.listdir(label_file_dir + os.sep +
                                           video_name)[0]
                with open(
                        label_file_dir + os.sep + video_name + os.sep +
                        one_file_name, "r") as file_obj:
                    for idx, line in enumerate(file_obj):
                        line = line.strip()
                        if line:
                            frame = line.split(",")[0]
                            img_path = img_folder + "/{0}/{1}.jpg".format(
                                video_name, frame)

                            pool.apply_async(func=delegate_mask_crop,
                                             args=(img_path, True, queue))
                            procs += 1
                for i in range(procs):
                    try:
                        entry = queue.get(block=True, timeout=60)
                        resultdict[entry[0]] = (entry[1], entry[2])
                    except Exception:
                        print("queue block time out")
                        break
                pool.close()
                pool.join()
                del pool
            else:  # only one process
                one_file_name = os.listdir(label_file_dir + os.sep +
                                           video_name)[0]
                with open(
                        label_file_dir + os.sep + video_name + os.sep +
                        one_file_name, "r") as file_obj:
                    for idx, line in enumerate(file_obj):
                        line = line.strip()
                        if line:
                            frame = line.split(",")[0]
                            img_path = img_folder + "/{0}/{1}.jpg".format(
                                video_name, frame)
                            try:
                                cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
                                    img_path, True)
                                resultdict[img_path] = (cropped_face,
                                                        AU_mask_dict)
                            except IndexError:
                                pass

            frame_label = dict()
            video_info = []
            video_img_path_set = set()
            for file_name in os.listdir(
                    label_file_dir + os.sep +
                    video_name):  # each file is one AU ( video file )
                AU = file_name[file_name.index("au") + 2:file_name.rindex(".")]

                with open(
                        label_file_dir + os.sep + video_name + os.sep +
                        file_name, "r") as file_obj:
                    for line in file_obj:
                        frame = int(line.split(",")[0])
                        AU_intensity = int(line.split(",")[1])
                        img_path = img_folder + "/{0}/{1}.jpg".format(
                            video_name, frame)
                        video_img_path_set.add((frame, img_path))
                        if frame not in frame_label:
                            frame_label[frame] = set()
                        if AU_intensity >= 1:  # NOTE that we apply AU_intensity >= 1
                            frame_label[int(frame)].add(AU)  #存储str类型
            for frame, img_path in sorted(video_img_path_set,
                                          key=lambda e: int(e[0])):
                if img_path not in resultdict:
                    continue
                AU_set = frame_label[frame]  # it is whole image's AU set

                if cut and len(AU_set) == 0:
                    continue
                cropped_face, AU_mask_dict = resultdict[img_path]

                all_couple_mask_dict = OrderedDict()
                for AU in sorted(map(
                        int, config.AU_ROI.keys())):  # ensure same order
                    all_couple_mask_dict[au_couple_dict[str(
                        AU)]] = AU_mask_dict[str(AU)]

                all_labels = list()  # 开始拼接all_labels
                for AU_couple in all_couple_mask_dict.keys(
                ):  # 顺序与all_couple_mask_dict一致
                    child_AU_couple_list = au_couple_child_dict[AU_couple]
                    AU_couple = set(AU_couple)
                    for child_AU_couple in child_AU_couple_list:
                        AU_couple.update(
                            child_AU_couple)  # combine child region's AU
                    if not is_binary_AU:  # in CRF, CRF模式需要将同一个区域的多个AU用逗号分隔,拼接
                        concat_AU = []
                        for AU in AU_couple:
                            if AU in AU_set:  # AU_set 存储真实AU(ground truth label):str类型
                                concat_AU.append(AU)

                        if len(concat_AU) == 0:
                            all_labels.append(
                                "0")  # 若该区域压根没有任何AU出现,为了让只支持单label的CRF工作,用0来代替
                        else:
                            all_labels.append(",".join(sorted(concat_AU)))

                    else:  # convert to np.array which is AU_bin
                        AU_bin = np.zeros(len(config.AU_SQUEEZE)).astype(
                            np.uint8)
                        for AU in AU_couple:
                            if AU in AU_set:  # judge if this region contain which subset of whole image's AU_set
                                np.put(AU_bin, config.AU_SQUEEZE.inv[AU], 1)
                        all_labels.append(tuple(AU_bin))

                video_info.append({
                    "frame": frame,
                    "cropped_face": cropped_face,
                    "all_couple_mask_dict": all_couple_mask_dict,
                    "all_labels": all_labels,
                    "video_id": video_name + "_" + orientation
                })
            resultdict.clear()
            if video_info:
                yield video_info, video_name
            else:
                print(
                    "error in file:{} no video found".format(video_name + "_" +
                                                             orientation))
Esempio n. 14
0
def read_BP4D_video_label(output_dir,
                          is_binary_AU,
                          is_need_adaptive_AU_relation=False,
                          force_generate=True,
                          proc_num=10,
                          cut=False,
                          train_subject=None):
    '''
    :param
            output_dir : 用于检查如果目标的文件已经存在,那么就不再生成
            is_binary_AU:
                          True --> return AU_binary 01010100
                          False --> used for CRF mode: single true AU label CRF/ or AU combination separate by comma
    :yield:  每个视频video收集齐了yield回去,视频中每一帧返回3部分:
            1. "img_path": /path/to/image
            1."all_couple_mask_dict": 是OrderedDict,包含所有区域的mask,不管AU是不是+1,还是-1(不管AU出现没出现),key是AU_couple,来自于au_couple_dict = get_zip_ROI_AU()
            2."labels": 是list,index与all_couple_mask_dict一致,其中每个label
               要么是binary形式01010110,
               要么是3,4(由于一块位置可以发生多个AU,因此可以用逗号隔开的字符串来返回),根据is_binary_AU返回不同的值
    '''
    mgr = mp.Manager()
    queue = mgr.Queue(maxsize=20000)

    if is_need_adaptive_AU_relation:
        adaptive_AU_relation(
        )  # delete AU relation pair occur in same facial region
    au_couple_dict = get_zip_ROI_AU()
    au_couple_child_dict = get_AU_couple_child(
        au_couple_dict)  # AU_couple => list of child AU_couple
    # if need_translate_combine_AU ==> "mask_path_dict":{(2,3,4): /pathtomask} convert to "mask_path_dict":{110: /pathtomask}
    # each is dict : {"img": /path/to/img, "mask_path_dict":{(2,3,4): /pathtomask}, }
    BP4D_base_dir_path = config.DATA_PATH["BP4D"]
    label_file_dir = BP4D_base_dir_path + "/AUCoding/"

    for file_name in os.listdir(label_file_dir):  # each file is a video

        subject_name = file_name[:file_name.index("_")]
        sequence_name = file_name[file_name.index("_") +
                                  1:file_name.rindex(".")]
        is_train = True if subject_name in train_subject else False
        if not force_generate:
            prefix = "train" if is_train else "test"
            target_file_path = output_dir + os.sep + prefix + os.sep + subject_name + "_" + sequence_name + ".npz"
            if os.path.exists(target_file_path):
                continue
        resultdict = {}
        if proc_num > 1:

            one_image_path = os.listdir(config.RGB_PATH["BP4D"] + os.sep +
                                        subject_name + os.sep +
                                        sequence_name)[0]
            zfill_len = len(one_image_path[:one_image_path.rindex(".")])

            procs = 0
            # read image file and crop and get AU mask
            pool = mp.Pool(processes=proc_num)
            with open(label_file_dir + "/" + file_name,
                      "r") as au_file_obj:  # each file is a video
                for idx, line in enumerate(au_file_obj):

                    if idx == 0:
                        continue
                    lines = line.split(",")
                    frame = lines[0].zfill(zfill_len)

                    img_path = config.RGB_PATH[
                        "BP4D"] + os.sep + subject_name + os.sep + sequence_name + os.sep + frame + ".jpg"
                    if not os.path.exists(img_path):
                        print("not exists img_path:{}".format(img_path))
                        continue

                    pool.apply_async(func=delegate_mask_crop,
                                     args=(img_path, True, queue))
                    procs += 1
                    # p = mp.Process(target=delegate_mask_crop, args=(img_path, True, queue))
                    # procs.append(p)
                    # p.start()

            for i in range(procs):
                try:
                    entry = queue.get(block=True, timeout=360)
                    resultdict[entry[0]] = (entry[1], entry[2])
                except Exception:
                    print("queue block time out")
                    break
            pool.close()
            pool.join()
            del pool
        else:  # only one process
            one_image_path = os.listdir(config.RGB_PATH["BP4D"] + os.sep +
                                        subject_name + os.sep +
                                        sequence_name)[0]
            zfill_len = len(one_image_path[:one_image_path.rindex(".")])
            with open(label_file_dir + "/" + file_name,
                      "r") as au_file_obj:  # each file is a video
                for idx, line in enumerate(au_file_obj):

                    lines = line.split(",")
                    frame = lines[0].zfill(zfill_len)

                    img_path = config.RGB_PATH[
                        "BP4D"] + os.sep + subject_name + os.sep + sequence_name + os.sep + frame + ".jpg"
                    if not os.path.exists(img_path):
                        print("not exists img_path:{}".format(img_path))
                        continue
                    try:
                        cropped_face, AU_mask_dict = FaceMaskCropper.get_cropface_and_mask(
                            img_path, channel_first=True)
                        # note that above AU_mask_dict, each AU may have mask that contains multiple separate regions
                        resultdict[img_path] = (cropped_face, AU_mask_dict)
                        print("one image :{} done".format(img_path))
                    except IndexError:
                        print("img_path:{} cannot obtain 68 landmark".format(
                            img_path))
                        pass
        # for p in procs:
        #     p.join()
        AU_column_idx = {}
        with open(label_file_dir + "/" + file_name,
                  "r") as au_file_obj:  # each file is a video

            video_info = []
            for idx, line in enumerate(
                    au_file_obj):  # each line represent a frame image

                line = line.rstrip()
                lines = line.split(",")
                if idx == 0:  # header define which column is which Action Unit
                    for col_idx, AU in enumerate(lines[1:]):
                        AU_column_idx[AU] = col_idx + 1  # read header
                    continue  # read head over , continue

                frame = lines[0].zfill(zfill_len)

                img_path = config.RGB_PATH[
                    "BP4D"] + os.sep + subject_name + os.sep + sequence_name + os.sep + frame + ".jpg"
                if not os.path.exists(img_path):
                    print("not exists img_path:{}".format(img_path))
                    continue
                if img_path not in resultdict:
                    print("img_path:{} landmark not found, continue".format(
                        img_path))
                    continue
                cropped_face, AU_mask_dict = resultdict[img_path]

                all_couple_mask_dict = OrderedDict()
                for AU in sorted(map(
                        int, config.AU_ROI.keys())):  # ensure same order
                    all_couple_mask_dict[au_couple_dict[str(
                        AU)]] = AU_mask_dict[str(AU)]

                au_label_dict = {
                    AU: int(lines[AU_column_idx[AU]])
                    for AU in config.AU_ROI.keys()
                }  # store real AU label
                if cut and all(_au_label == 0
                               for _au_label in au_label_dict.values()):
                    continue
                all_labels = list()  # 开始拼接all_labels
                for AU_couple in all_couple_mask_dict.keys(
                ):  # 顺序与all_couple_mask_dict一致
                    child_AU_couple_list = au_couple_child_dict[AU_couple]
                    AU_couple = set(AU_couple)
                    for child_AU_couple in child_AU_couple_list:
                        AU_couple.update(
                            child_AU_couple
                        )  # label fetch: combine child region's AU
                    if not is_binary_AU:  # in CRF, CRF模式需要将同一个区域的多个AU用逗号分隔,拼接
                        concat_AU = []
                        for AU in AU_couple:
                            if au_label_dict[AU] == 1:
                                concat_AU.append(AU)
                            elif au_label_dict[AU] == 9:
                                concat_AU.append("?{}".format(AU))

                        if len(concat_AU) == 0:
                            all_labels.append(
                                "0")  # 若该区域压根没有任何AU出现,为了让只支持单label的CRF工作,用0来代替
                        else:
                            all_labels.append(",".join(concat_AU))

                    else:  # convert to np.array which is AU_bin
                        AU_bin = np.zeros(len(config.AU_SQUEEZE)).astype(
                            np.uint8)
                        for AU in AU_couple:
                            if au_label_dict[AU] == 9:
                                np.put(AU_bin, config.AU_SQUEEZE.inv[AU], -1)
                            elif au_label_dict[AU] == 1:
                                np.put(AU_bin, config.AU_SQUEEZE.inv[AU], 1)

                        all_labels.append(tuple(AU_bin))

                video_info.append({
                    "frame":
                    frame,
                    "cropped_face":
                    cropped_face,
                    "all_couple_mask_dict":
                    all_couple_mask_dict,
                    "all_labels":
                    all_labels,
                    "video_id":
                    subject_name + "_" + sequence_name
                })
        resultdict.clear()
        if video_info:
            yield video_info, subject_name
        else:
            print("error video_info:{}".format(file_name))
Esempio n. 15
0
    def get_from_entry(self, img_path, AU_set, database_name):
        if not os.path.exists(img_path):
            raise IndexError("image file_path: {} not exist!".format(img_path))

        try:
            # print("begin fetch cropped image and bbox {}".format(img_path))

            key_prefix = self.database + "|"
            if self.pretrained_target is not None and len(
                    self.pretrained_target) > 0:
                key_prefix = self.pretrained_target + "|"
            rgb_img_path = config.RGB_PATH[
                self.database] + os.path.sep + "/".join(
                    img_path.split("/")[-3:])

            cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
                img_path,
                rgb_img_path,
                channel_first=True,
                mc_manager=self.mc_manager,
                key_prefix=key_prefix)

        except IndexError:
            # print("read image error:{}".format(read_img_path))
            # return AUDataset.get_example(self, i-1)  # 不得已为之
            raise IndexError(
                "fetch crooped face and mask error:{} ! face landmark may not found."
                .format(img_path))

        non_AU_set = set()
        for AU in config.AU_ROI.keys():
            if AU not in AU_set and "?{}".format(AU) not in AU_set:
                non_AU_set.add("-{}".format(AU))
        unknown_AU_set = set()
        known_AU_set = set()
        for AU in AU_set:
            if AU.startswith("?"):
                unknown_AU_set.add(AU)
            else:
                known_AU_set.add(AU)
        all_AU_set = set()
        all_AU_set.update(non_AU_set)
        all_AU_set.update(unknown_AU_set)
        all_AU_set.update(known_AU_set)

        current_AU_couple = defaultdict(
            set)  # key = AU couple, value = AU 用于合并同一个区域的不同AU
        couple_box_dict = OrderedDict()  # key= AU couple

        # mask_path_dict's key AU maybe 3 or -2 or ?5
        for AU in all_AU_set:
            _AU = AU if AU.isdigit() else AU[1:]
            # print("AU:",AU,"_AU:",_AU)
            try:
                current_AU_couple[self.au_couple_dict[_AU]].add(
                    AU
                )  # value list may contain ?2 or -1, 所以这一步会把脸上有的,没有的AU都加上
            except KeyError:
                print(list(self.au_couple_dict.keys()), _AU)
                raise
        for AU, box_list in sorted(AU_box_dict.items(),
                                   key=lambda e: int(e[0])):
            _AU = AU if AU.isdigit() else AU[1:]
            if _AU in config.SYMMETRIC_AU and len(box_list) == 1:
                box_list.append(random.choice(box_list))
            couple_box_dict[
                self.au_couple_dict[_AU]] = box_list  # 所以这一步会把脸上有的,没有的AU都加上
        label = [
        ]  # one box may have multiple labels. so each entry is 10101110 binary code
        bbox = []  # AU = 0背景的box是随机取的
        self.assign_label(couple_box_dict, current_AU_couple, bbox, label)
        # print("assigned label over")
        assert len(bbox) > 0
        bbox = np.stack(bbox).astype(np.float32)
        label = np.stack(label).astype(np.int32)
        # bbox, label = self.proposal(bbox, label)  # 必须保证每个batch拿到的box数量一样
        assert bbox.shape[0] == label.shape[0]
        return cropped_face, bbox, label
Esempio n. 16
0
def parallel_landmark_and_conn_component(img_path, landmark_dict, AU_box_dict):

    orig_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
    if landmark_dict is None or len(landmark_dict) == 0:
        try:
            landmark_dict, _, _ = FaceMaskCropper.landmark.landmark(
                image=orig_img, need_txt_img=False)  # slow
        except IndexError:
            if AU_box_dict is None:
                AU_box_dict = defaultdict(list)
                for AU in config.AU_ROI.keys():
                    if AU in config.SYMMETRIC_AU:
                        for _ in range(2):
                            AU_box_dict[AU].append(
                                (0.0, 0.0, config.IMG_SIZE[1],
                                 config.IMG_SIZE[0]))
                    else:
                        AU_box_dict[AU].append(
                            (0.0, 0.0, config.IMG_SIZE[1], config.IMG_SIZE[0]))
            return img_path, AU_box_dict, None, True

    cropped_face, rect = FaceMaskCropper.dlib_face_crop(
        orig_img, landmark_dict)
    cropped_face = cv2.resize(cropped_face, config.IMG_SIZE)
    del orig_img
    if AU_box_dict is None:
        AU_box_dict = defaultdict(list)
        for AU in config.AU_ROI.keys():
            mask = crop_face_mask_from_landmark(
                AU,
                landmark_dict,
                cropped_face,
                rect,
                landmarker=FaceMaskCropper.landmark)
            connect_arr = cv2.connectedComponents(
                mask, connectivity=8,
                ltype=cv2.CV_32S)  # mask shape = 1 x H x W
            component_num = connect_arr[0]
            label_matrix = connect_arr[1]
            # convert mask polygon to rectangle
            for component_label in range(1, component_num):

                row_col = list(zip(*np.where(label_matrix == component_label)))
                row_col = np.array(row_col)
                y_min_index = np.argmin(row_col[:, 0])
                y_min = row_col[y_min_index, 0]
                x_min_index = np.argmin(row_col[:, 1])
                x_min = row_col[x_min_index, 1]
                y_max_index = np.argmax(row_col[:, 0])
                y_max = row_col[y_max_index, 0]
                x_max_index = np.argmax(row_col[:, 1])
                x_max = row_col[x_max_index, 1]
                # same region may be shared by different AU, we must deal with it
                coordinates = (y_min, x_min, y_max, x_max)

                if y_min == y_max and x_min == x_max:  # 尖角处会产生孤立的单个点,会不会有一个mask只有尖角?
                    # print(("single point mask: img:{0} mask:{1}".format(self._images[i], mask_path)))
                    # 然后用concat_example来拼接起来
                    continue
                AU_box_dict[AU].append(coordinates)
            del label_matrix
            del mask
    for AU, box_lst in AU_box_dict.items():
        AU_box_dict[AU] = sorted(box_lst, key=lambda e: int(e[3]))
    return img_path, AU_box_dict, landmark_dict, False
Esempio n. 17
0
    def get_example(self, i):
        '''
        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        :param i:  the index of the example
        :return: tuple of an image and its all bounding box
        '''
        if i > len(self.result_data):
            raise IndexError("Index too large")
        rgb_path, _, AU_set, database = self.result_data[i]

        if self.get_npz_name(
                self.npz_dir, database, self.fold, self.split_index,
                self.extract_sequence_key(rgb_path).replace("/", "_")):
            return None, None, None, None, rgb_path

        flow_path_list = self.collect_flow_image_paths(i)

        key_prefix = self.database + "|"
        if self.pretrained_target is not None and len(
                self.pretrained_target) > 0:
            key_prefix = self.pretrained_target + "|"

        flow_face_list = []
        for flow_dict in flow_path_list:
            adjacent_rgb_path = flow_dict["rgb"]
            adjacent_flow_path = flow_dict["flow"]
            try:
                # FIXME read too slow, use the same rgb path to accelerate speed . but this trick is not accurate
                flow_face, _ = FaceMaskCropper.get_cropface_and_box(
                    adjacent_flow_path,
                    adjacent_rgb_path,
                    channel_first=True,
                    mc_manager=self.mc_manager,
                    key_prefix=key_prefix)
                flow_face = flow_face[:2, :, :]  # 2, H, W
                flow_face_list.append(
                    flow_face
                )  # only use two channel x and y of optical flow image
            except IndexError:
                print("image path : {} not get box".format(adjacent_rgb_path))
                flow_face = cv2.imread(adjacent_flow_path)
                flow_face = cv2.resize(flow_face, config.IMG_SIZE)
                flow_face = np.transpose(flow_face, axes=(2, 0, 1))
                flow_face = flow_face[:2, :, :]
                flow_face_list.append(flow_face)

        flow_face_list = np.stack(flow_face_list)  # T, C, H, W
        if len(flow_face_list) < self.L:
            rest_pad_len = self.L - len(flow_face_list)
            flow_face_list = np.pad(flow_face_list, ((0, rest_pad_len), (0, 0),
                                                     (0, 0), (0, 0)), 'mean')
        assert flow_face_list.shape[0] == self.L

        try:
            # print("begin fetch cropped image and bbox {}".format(img_path))
            rgb_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
                rgb_path,
                rgb_path,
                channel_first=True,
                mc_manager=self.mc_manager,
                key_prefix=key_prefix)
        except IndexError:
            print("image path : {} not get box".format(rgb_path))
            label = np.zeros(len(config.AU_SQUEEZE), dtype=np.int32)
            for AU in AU_set:
                np.put(label, config.AU_SQUEEZE.inv[AU], 1)
            if self.paper_report_label_idx:
                label = label[self.paper_report_label_idx]

            rgb_face = np.transpose(
                cv2.resize(cv2.imread(rgb_path), config.IMG_SIZE), (2, 0, 1))

            whole_bbox = np.tile(
                np.array(
                    [1, 1, config.IMG_SIZE[1] - 1, config.IMG_SIZE[0] - 1],
                    dtype=np.float32), (config.BOX_NUM[database], 1))
            whole_label = np.tile(label, (config.BOX_NUM[database], 1))
            return rgb_face, flow_face_list, whole_bbox, whole_label, rgb_path

        current_AU_couple = defaultdict(
            set)  # key = AU couple, value = AU 用于合并同一个区域的不同AU
        couple_box_dict = OrderedDict()  # key= AU couple

        # mask_path_dict's key AU maybe 3 or -2 or ?5
        for AU in AU_set:
            assert AU.isdigit()
            try:
                current_AU_couple[self.au_couple_dict[AU]].add(
                    AU
                )  # value list may contain ?2 or -1, 所以这一步会把脸上有的,没有的AU都加上
            except KeyError:
                print(list(self.au_couple_dict.keys()), AU)
                raise
        for AU, box_list in sorted(AU_box_dict.items(),
                                   key=lambda e: int(e[0])):
            assert AU.isdigit()
            if AU in config.SYMMETRIC_AU and len(box_list) == 1:
                box_list.append(random.choice(box_list))
            couple_box_dict[
                self.au_couple_dict[AU]] = box_list  # 所以这一步会把脸上有的,没有的AU都加上
        label = [
        ]  # one box may have multiple labels. so each entry is 10101110 binary code
        bbox = []  # AU = 0背景的box是随机取的
        self.assign_label(couple_box_dict, current_AU_couple, bbox, label)
        # print("assigned label over")
        assert len(bbox) > 0
        bbox = np.stack(bbox).astype(np.float32)
        label = np.stack(label).astype(np.int32)
        # bbox, label = self.proposal(bbox, label)  # 必须保证每个batch拿到的box数量一样
        assert bbox.shape[0] == label.shape[0]
        if self.paper_report_label_idx is not None:
            label = label[:, self.paper_report_label_idx]
        return rgb_face, flow_face_list, bbox, label, rgb_path
Esempio n. 18
0
    def get_example(self, i):
        '''
        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        :param i:  the index of the example
        :return: tuple of an image and its all bounding box
        '''
        if i > len(self.result_data):
            raise IndexError("Index too large")
        img_path, from_img_path, AU_set, database_name = self.result_data[i]

        if not os.path.exists(img_path):
            raise IndexError("image file_path: {} not exist!".format(img_path))

        try:
            # print("begin fetch cropped image and bbox {}".format(img_path))
            read_img_path = img_path if from_img_path == "#" else from_img_path
            rgb_img_path = config.RGB_PATH[
                self.database] + os.path.sep + os.path.sep.join(
                    read_img_path.split("/")[-3:])

            img_id = "/".join(
                (read_img_path.split("/")[-3], read_img_path.split("/")[-2],
                 read_img_path.split("/")[-1]
                 [:read_img_path.split("/")[-1].index(".")]))
            key_prefix = self.database + "@{}".format(
                self.img_resolution) + "|"
            if self.pretrained_target is not None and len(
                    self.pretrained_target) > 0:
                key_prefix = self.pretrained_target + "|"

            cropped_face, AU_box_dict = FaceMaskCropper.get_cropface_and_box(
                read_img_path,
                rgb_img_path,
                channel_first=True,
                mc_manager=self.mc_manager,
                key_prefix=key_prefix)

        except IndexError:
            print("crop image error:{}".format(read_img_path))
            label = np.zeros(len(config.AU_SQUEEZE), dtype=np.int32)
            for AU in AU_set:
                np.put(label, config.AU_SQUEEZE.inv[AU], 1)
            face = np.transpose(
                cv2.resize(cv2.imread(read_img_path), config.IMG_SIZE),
                (2, 0, 1))

            whole_bbox = np.tile(
                np.array(
                    [1, 1, config.IMG_SIZE[1] - 1, config.IMG_SIZE[0] - 1],
                    dtype=np.float32), (config.BOX_NUM[database_name], 1))
            whole_label = np.tile(label, (config.BOX_NUM[database_name], 1))

            return face, whole_bbox, whole_label

            # return self.get_example(random.randint(0, len(self)-1))  # 不得已为之

            # raise IndexError("fetch crooped face and mask error:{} ! face landmark may not found.".format(read_img_path))
        # print("fetch over")
        non_AU_set = set()
        for AU in config.AU_ROI.keys():
            if AU not in AU_set and "?{}".format(AU) not in AU_set:
                non_AU_set.add("-{}".format(AU))
        unknown_AU_set = set()
        known_AU_set = set()
        for AU in AU_set:
            if AU.startswith("?"):
                unknown_AU_set.add(AU)
            else:
                known_AU_set.add(AU)
        all_AU_set = set()
        all_AU_set.update(non_AU_set)
        all_AU_set.update(unknown_AU_set)
        all_AU_set.update(known_AU_set)

        current_AU_couple = defaultdict(
            set)  # key = AU couple, value = AU 用于合并同一个区域的不同AU
        couple_box_dict = OrderedDict()  # key= AU couple

        # mask_path_dict's key AU maybe 3 or -2 or ?5
        for AU in all_AU_set:
            _AU = AU if AU.isdigit() else AU[1:]
            # print("AU:",AU,"_AU:",_AU)
            try:
                current_AU_couple[self.au_couple_dict[_AU]].add(
                    AU
                )  # value list may contain ?2 or -1, 所以这一步会把脸上有的,没有的AU都加上
            except KeyError:
                print(list(self.au_couple_dict.keys()), _AU)
                raise
        for AU, box_list in sorted(AU_box_dict.items(),
                                   key=lambda e: int(e[0])):
            _AU = AU if AU.isdigit() else AU[1:]
            couple_box_dict[
                self.au_couple_dict[_AU]] = box_list  # 所以这一步会把脸上有的,没有的AU都加上
        label = [
        ]  # one box may have multiple labels. so each entry is 10101110 binary code
        bbox = []  # AU = 0背景的box是随机取的
        AU_couple_lst = []
        self.assign_label(couple_box_dict, current_AU_couple, bbox, label,
                          AU_couple_lst)
        # print("assigned label over")
        if len(bbox) == 0:
            print("no box found on face")
            return self.get_example(i - 1)
        bbox = np.stack(bbox).astype(np.float32)
        label = np.stack(label).astype(np.int32)
        # bbox, label = self.proposal(bbox, label)  # 必须保证每个batch拿到的box数量一样
        assert bbox.shape[0] == label.shape[0]
        return cropped_face, bbox, label  # AU_couple_lst为了random shift bbox
    def get_parallel_example(self, fetch_list):
        parallel_data = []
        img_path_label_dict = dict()
        for i in fetch_list:
            if i > len(self.result_data):
                raise IndexError("Index too large")
            img_path, AU_set, database_name = self.result_data[i]
            img_path_label_dict[img_path] = AU_set

            # print("begin fetch cropped image and bbox {}".format(img_path))
            key_prefix = self.database + "|"
            key = key_prefix+ "/".join((img_path.split("/")[-3], img_path.split("/")[-2],img_path.split("/")[-1]))
            landmark_dict = None
            AU_box_dict = None
            if self.mc_manager is not None and key in self.mc_manager:
                result = self.mc_manager.get(key)
                landmark_dict = result.get("landmark_dict",None)
                AU_box_dict = result.get("AU_box_dict", None)
            parallel_data.append((img_path, landmark_dict, AU_box_dict))
        with Pool(processes=3) as pool:
            parallel_result = pool.starmap_async(parallel_landmark_and_conn_component, parallel_data)
            img_dict = dict()
            for img_path, *_ in parallel_data:
                img_dict[img_path] = cv2.imread(img_path, cv2.IMREAD_COLOR)
            parallel_result.wait()
        # pool.close()
        # pool.join()

        for img_path, AU_box_dict, landmark_dict, box_is_whole_image in parallel_result.get():
            cropped_face = img_dict[img_path]
            rect = None
            if landmark_dict is not None:
                cropped_face, rect = FaceMaskCropper.dlib_face_crop(img_dict[img_path], landmark_dict)
            cropped_face = cv2.resize(cropped_face, config.IMG_SIZE)
            cropped_face = np.transpose(cropped_face, (2, 0, 1))  # put channel first!
            AU_set = img_path_label_dict[img_path]
            key_prefix = self.database + "|"
            key = key_prefix + "/".join((img_path.split("/")[-3], img_path.split("/")[-2], img_path.split("/")[-1]))
            if self.mc_manager is not None:
                save_dict = {"landmark_dict": landmark_dict, "AU_box_dict": AU_box_dict, "crop_rect":rect}
                self.mc_manager.set(key, save_dict)

            AU_couple_gt_label = defaultdict(set)  # key = AU couple, value = AU 用于合并同一个区域的不同AU
            couple_box_dict = DefaultOrderedDict(list)  # key= AU couple

            # mask_path_dict's key AU maybe 3 or -2 or ?5
            if box_is_whole_image:
                for AU in config.AU_SQUEEZE.values():
                    AU_couple_gt_label[self.au_couple_dict[AU]] = AU_set
            else:
                for AU in config.AU_SQUEEZE.values():
                    if AU in AU_set:
                        AU_couple_gt_label[self.au_couple_dict[AU]].add(AU)

            for AU, box_list in sorted(AU_box_dict.items(), key=lambda e: int(e[0])):
                assert AU.isdigit()
                couple_box_dict[self.au_couple_dict[AU]] = box_list # couple_box_dict will contain all AU including not occur on face
            label = []  # one box may have multiple labels. so each entry is 10101110 binary code
            bbox = []
            self.assign_label(couple_box_dict, AU_couple_gt_label, bbox, label)
            assert len(bbox) > 0
            # print("assigned label over")
            bbox = np.stack(bbox).astype(np.float32)
            label = np.stack(label).astype(np.int32)
            assert bbox.shape[0] == label.shape[0]
            yield cropped_face, bbox, label