from color_filtering_img import apply_color_filter from pathlib import Path import cv2 import numpy as np from img_utils import DisplayUtils, GeneralUtils, ShapeDetector shape_detector = ShapeDetector() utils = GeneralUtils() display_utils = DisplayUtils() def apply_ops(frame): """DEPRECATED, used for testing appying various operations to the frame""" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # cv2.imshow("gray before", gray) # blurred = cv2.bilateralFilter(gray, 25, 15, 75) blurred = cv2.GaussianBlur(gray, (5, 5), 0) # _, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 201, 0) # thresh = cv2.bitwise_or(thresh_norm, thresh_adapt) # cv2.imshow("blurred", blurred) # cv2.imshow("thresh", thresh) median = np.median(gray) sigma = 0.33 lower_thresh = int(max(0, (1.0 - sigma) * median)) upper_thresh = int(min(255, (1.0 + sigma) * median))
from pathlib import Path import cv2 import numpy as np from img_utils import DisplayUtils, GeneralUtils, ShapeDetector shape_detector = ShapeDetector() utils = GeneralUtils() display_utils = DisplayUtils() def apply_color_filter(img, lower=[5, 0, 60], upper=[20, 180, 255]): blurred = cv2.medianBlur(img, 5) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) lower_brown = np.array(lower) upper_brown = np.array(upper) brown_mask = cv2.inRange(hsv, lower_brown, upper_brown) brown_res = cv2.bitwise_and(img, img, mask=brown_mask) brown_cleaned = cv2.morphologyEx(brown_res, cv2.MORPH_OPEN, (5, 5), iterations=1) brown_blurred = cv2.GaussianBlur(brown_cleaned, (3, 3), 0) ### Temp Displaying ### # grid = display_utils.create_img_grid( # [ # [brown_res, brown_dilated, brown_blurred],
import target_detection_img, color_filtering_img from center_prediction import CenterPredModel # TODO ideas # find contours after each mask, then blacken everything under a certain area. # crop into brown target after using contours to find a rectangle that is large on brown mask # add threshold that reverts to previous known centriod if over it rather than predicting # calulate depth # try expanding roi on point_tracking then running goodFeaturesToTrack on expaned roi # accesible at drive folder: https://drive.google.com/drive/folders/11khSnQNsxnt0JStAec8j-widmBLOzPsO?usp=sharing # video name (can use others too): vision-video-trees-white-notape-lowres-0.mp4 utils = GeneralUtils() shape_detector = ShapeDetector() display_utils = DisplayUtils() # keep last 150 frames or last 5 seconds at 30fps centroids_deque = deque(maxlen=150) NO_TARGET_THRESH = 15 frames_since_target = 0 CONSTANT_CENTROID_THRESH = 6 FRAMES_FOR_TRAIN = 3 MODEL_DEGREE = 1 center_pred_model = CenterPredModel(degree=MODEL_DEGREE) frame_count = 0 truth_centroids = [] pred_centroids = []
# video_path = Path( # "E:/code/projects/frc-vision/datasets/target-dataset/vision-videos/orange-teal-target-1080p.mp4" # ) # video_path = Path( # "E:/code/projects/frc-vision/datasets/target-dataset/vision-videos/vision-video-trees-white-notape-lowres-0.mp4" # ) video_path = Path( "E:/code/projects/frc-vision/datasets/target-dataset/vision-videos/distance-measuring/all_dists.mp4" ) RESOLUTION_SCALE = 1 KNOWN_DEPTH_WEIGHT = 0.5 utils = GeneralUtils() shape_detector = ShapeDetector() display_utils = DisplayUtils() depth_model = DepthPredModel() depth_model.load_from_json(meta_path, pixel_to_dist_path) depth_deque = Deque(maxlen=5) # Parameters for lucas kanade optical flow lk_params = dict( winSize=(27, 27), maxLevel=5, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 1000, 1.01), ) def get_hexagon_points(frame): # equalize color and brightness, 2000+ fps
import cv2 import numpy as np from img_utils import DisplayUtils, GeneralUtils, ShapeDetector from depth_prediction import DepthPredModel # zero for completely silent, 1 for just console logs, 2 for displaying frames VERBOSE_LEVEL = 2 RESOLUTION_SCALE = 0.5 pixel_to_dist_path = Path().cwd() / "target_points.json" meta_path = Path().cwd() / "meta.json" utils = GeneralUtils() shape_detector = ShapeDetector() display_utils = DisplayUtils() depth_model = DepthPredModel() depth_model.load_from_json(meta_path, pixel_to_dist_path) # Parameters for lucas kanade optical flow lk_params = dict( winSize=(25, 25), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03), ) def get_hexagon_points(frame): cv2.normalize(frame, frame, 0, 255, cv2.NORM_MINMAX)