def test_to_normalized_batch__all_columns(self): batch = ia.UnnormalizedBatch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8), heatmaps=[np.zeros((2, 2, 1), dtype=np.float32)], segmentation_maps=[np.zeros((2, 2, 1), dtype=np.int32)], keypoints=[[(0, 0)]], bounding_boxes=[[ia.BoundingBox(0, 0, 1, 1)]], polygons=[[ia.Polygon([(0, 0), (1, 0), (1, 1)])]], line_strings=[[ia.LineString([(0, 0), (1, 0)])]]) batch_norm = batch.to_normalized_batch() assert isinstance(batch_norm, ia.Batch) assert ia.is_np_array(batch_norm.images_unaug) assert batch_norm.images_unaug.shape == (1, 2, 2, 3) assert isinstance(batch_norm.heatmaps_unaug[0], ia.HeatmapsOnImage) assert isinstance(batch_norm.segmentation_maps_unaug[0], ia.SegmentationMapsOnImage) assert isinstance(batch_norm.keypoints_unaug[0], ia.KeypointsOnImage) assert isinstance(batch_norm.bounding_boxes_unaug[0], ia.BoundingBoxesOnImage) assert isinstance(batch_norm.polygons_unaug[0], ia.PolygonsOnImage) assert isinstance(batch_norm.line_strings_unaug[0], ia.LineStringsOnImage) assert batch_norm.get_column_names() == [ "images", "heatmaps", "segmentation_maps", "keypoints", "bounding_boxes", "polygons", "line_strings" ]
def test_get_column_names__only_images(self): batch = ia.UnnormalizedBatch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8)) names = batch.get_column_names() assert names == ["images"]
def test_to_normalized_batch__only_images(self): batch = ia.UnnormalizedBatch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8)) batch_norm = batch.to_normalized_batch() assert isinstance(batch_norm, ia.Batch) assert ia.is_np_array(batch_norm.images_unaug) assert batch_norm.images_unaug.shape == (1, 2, 2, 3) assert batch_norm.get_column_names() == ["images"]
def test_fill_from_augmented_normalized_batch(self): batch = ia.UnnormalizedBatch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8), heatmaps=[np.zeros((2, 2, 1), dtype=np.float32)], segmentation_maps=[np.zeros((2, 2, 1), dtype=np.int32)], keypoints=[[(0, 0)]], bounding_boxes=[[ia.BoundingBox(0, 0, 1, 1)]], polygons=[[ia.Polygon([(0, 0), (1, 0), (1, 1)])]], line_strings=[[ia.LineString([(0, 0), (1, 0)])]]) batch_norm = ia.Batch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8), heatmaps=[ ia.HeatmapsOnImage(np.zeros((2, 2, 1), dtype=np.float32), shape=(2, 2, 3)) ], segmentation_maps=[ ia.SegmentationMapsOnImage(np.zeros((2, 2, 1), dtype=np.int32), shape=(2, 2, 3)) ], keypoints=[ ia.KeypointsOnImage([ia.Keypoint(0, 0)], shape=(2, 2, 3)) ], bounding_boxes=[ ia.BoundingBoxesOnImage([ia.BoundingBox(0, 0, 1, 1)], shape=(2, 2, 3)) ], polygons=[ ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)) ], line_strings=[ ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ]) batch_norm.images_aug = batch_norm.images_unaug batch_norm.heatmaps_aug = batch_norm.heatmaps_unaug batch_norm.segmentation_maps_aug = batch_norm.segmentation_maps_unaug batch_norm.keypoints_aug = batch_norm.keypoints_unaug batch_norm.bounding_boxes_aug = batch_norm.bounding_boxes_unaug batch_norm.polygons_aug = batch_norm.polygons_unaug batch_norm.line_strings_aug = batch_norm.line_strings_unaug batch = batch.fill_from_augmented_normalized_batch(batch_norm) assert batch.images_aug.shape == (1, 2, 2, 3) assert ia.is_np_array(batch.heatmaps_aug[0]) assert ia.is_np_array(batch.segmentation_maps_aug[0]) assert batch.keypoints_aug[0][0] == (0, 0) assert batch.bounding_boxes_aug[0][0].x1 == 0 assert batch.polygons_aug[0][0].exterior[0][0] == 0 assert batch.line_strings_aug[0][0].coords[0][0] == 0
def test_get_column_names__all_columns(self): batch = ia.UnnormalizedBatch( images=np.zeros((1, 2, 2, 3), dtype=np.uint8), heatmaps=[np.zeros((2, 2, 1), dtype=np.float32)], segmentation_maps=[np.zeros((2, 2, 1), dtype=np.int32)], keypoints=[[(0, 0)]], bounding_boxes=[[ia.BoundingBox(0, 0, 1, 1)]], polygons=[[ia.Polygon([(0, 0), (1, 0), (1, 1)])]], line_strings=[[ia.LineString([(0, 0), (1, 0)])]]) names = batch.get_column_names() assert names == [ "images", "heatmaps", "segmentation_maps", "keypoints", "bounding_boxes", "polygons", "line_strings" ]