Esempio n. 1
0
    def test_predict(self):
        x = np.array([[1, 0, 0], [0, 1, 1], [1, 1, 1], [0, 1, 1]])
        y = {"test1": [1, 0, 2, 0], "test2": [1, 0, 2, 0]}

        lr = LogisticRegression()
        lr.fit(EncodedData(x, y), Label("test2"))

        test_x = np.array([[0, 1, 0], [1, 0, 0]])
        y = lr.predict(EncodedData(test_x), Label("test2"))

        self.assertTrue(len(y["test2"]) == 2)
        self.assertTrue(y["test2"][1] in [0, 1, 2])
Esempio n. 2
0
    def test_run(self):
        method = LogisticRegression()
        dataset = RepertoireDataset()
        dataset.encoded_data = EncodedData(examples=np.array([[1, 2, 3],
                                                              [2, 3, 4],
                                                              [1, 2, 3],
                                                              [2, 3, 4],
                                                              [1, 2, 3],
                                                              [2, 3, 4]]),
                                           labels={
                                               "l1": [1, 0, 1, 0, 1, 0],
                                               "l2": [0, 1, 0, 1, 0, 1]
                                           },
                                           feature_names=["f1", "f2", "f3"])

        path = EnvironmentSettings.root_path / "test/tmp/mlmethodtrainer/"

        method = MLMethodTrainer.run(
            MLMethodTrainerParams(result_path=path,
                                  dataset=dataset,
                                  label=Label(name="l1", values=[0, 1]),
                                  method=method,
                                  model_selection_n_folds=2,
                                  model_selection_cv=True,
                                  cores_for_training=1,
                                  train_predictions_path=path /
                                  "predictions.csv",
                                  ml_details_path=path / "details.yaml",
                                  optimization_metric="balanced_accuracy"))

        method.predict(EncodedData(np.array([1, 2, 3]).reshape(1, -1)),
                       Label("l1"))
        self.assertTrue(os.path.isfile(path / "predictions.csv"))
        self.assertTrue(os.path.isfile(path / "details.yaml"))

        shutil.rmtree(path)