Esempio n. 1
0
def readLibraries(path, sheetName):
    
    sheet = iu.readtable([path, sheetName]) # Note, skipping the header row by default
    # dict to map spreadsheet fields to the Library fields
    properties = ('model_field','required','default','converter')
    date_parser = lambda x : util.convertdata(x,date)
    column_definitions = {'Name': ('name',True), # TODO use the model to determine if req'd
                          'ShortName': ('short_name',True),
                          'Library Type':'type',
                          'Date First Plated': ('date_first_plated',False,None,date_parser),
                          'Date Data Received':('date_data_received',False,None,date_parser),
                          'Date Loaded': ('date_loaded',False,None,date_parser),
                          'Date Publicly Available': ('date_publicly_available',False,None,date_parser),
                          'Most Recent Update': ('date_updated',False,None,util.date_converter),
                          'Is Restricted':('is_restricted',False,False) }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)
    
    rows = 0    
    libraries = {}
    for row in sheet:
        logger.debug(str(('row raw: ',row)))
        r = util.make_row(row)
        logger.debug(str(('row: ',r)))
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]
            
            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            library = Library(**initializer)
            library.save()
            logger.info(str(('library created', library)))
            libraries[library.short_name] = library
            rows += 1
        except Exception, e:
            logger.error(str(('library initializer problem: ', initializer)))
            raise e
Esempio n. 2
0
def read_metadata(path):
    """
    Read in the DataSets, Datacolumns, and Data sheets.  In the Data sheet, rows
    are DataRecords, and columns are DataPoints
    """
    # Read in the DataSet
    sheetname = 'Meta'
    # Note, skipping the header row by default
    metaSheet = iu.readtable([path, sheetname]) 

    # Define the Column Names -> model fields mapping
    properties = ('model_field','required','default','converter')
    field_definitions = {'Lead Screener First': 'lead_screener_firstname',
              'Lead Screener Last': 'lead_screener_lastname',
              'Lead Screener Email': 'lead_screener_email',
              'Lab Head First': 'lab_head_firstname',
              'Lab Head Last': 'lab_head_lastname',
              'Lab Head Email': 'lab_head_email',
              'Title': 'title',
              'Facility ID': ('facility_id',True,None, 
                              lambda x: util.convertdata(x,int)),
              'Summary': 'summary',
              'Protocol': 'protocol',
              'References': 'protocol_references',
              'Date Data Received':('date_data_received',False,None,
                                    util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,
                                          util.date_converter),
              'Most Recent Update': ('date_updated',False,None,
                                      util.date_converter),
              'Is Restricted':('is_restricted',False,False,util.bool_converter),
              'Dataset Type':('dataset_type',False),
              'Bioassay':('bioassay',False),
              'Dataset Keywords':('dataset_keywords',False),
              'Usage Message':('usage_message',False),
              }
    
    sheet_labels = []
    for row in metaSheet:
        rowAsUnicode = util.make_row(row)
        sheet_labels.append(rowAsUnicode[0])

    # convert the definitions to fleshed out dict's, with strategies for 
    # optional, default and converter
    field_definitions = \
        util.fill_in_column_definitions(properties,field_definitions)
    # create a dict mapping the column/row ordinal to the proper definition dict
    cols = util.find_columns(field_definitions, sheet_labels,
                             all_column_definitions_required=False)

    
    initializer = {}
    for i,row in enumerate(metaSheet):
        rowAsUnicode = util.make_row(row)
        properties = cols[i]
        value = rowAsUnicode[1]
        
        logger.debug(str(('read col: ', i, ', ', properties)))
        required = properties['required']
        default = properties['default']
        converter = properties['converter']
        model_field = properties['model_field']

        # Todo, refactor to a method
        logger.debug(str(('raw value', value)))
        if(converter != None):
            value = converter(value)
        if(value == None ):
            if( default != None ):
                value = default
        if(value == None and  required == True):
            raise Exception('Field is required: %s, record: %d' % 
                            (properties['column_label'],row))
        logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
        initializer[model_field] = value

    return initializer 
Esempio n. 3
0
def main(path):
    """
    Read in the Protein
    """
    sheet_name = "HMS-LINCS Kinases"
    sheet = iu.readtable([path, sheet_name, 1])  # Note, skipping the header row by default

    properties = ("model_field", "required", "default", "converter")
    column_definitions = {
        "PP_Name": ("name", True),
        "PP_LINCS_ID": ("lincs_id", True, None, lambda x: x[x.index("HMSL") + 4 :]),
        "PP_UniProt_ID": "uniprot_id",
        "PP_Alternate_Name": "alternate_name",
        "PP_Alternate_Name[2]": "alternate_name_2",
        "PP_Provider": "provider",
        "PP_Provider_Catalog_ID": "provider_catalog_id",
        "PP_Batch_ID": "batch_id",
        "PP_Amino_Acid_Sequence": "amino_acid_sequence",
        "PP_Gene_Symbol": "gene_symbol",
        "PP_Gene_ID": "gene_id",
        "PP_Protein_Source": "protein_source",
        "PP_Protein_Form": "protein_form",
        "PP_Protein_Purity": "protein_purity",
        "PP_Protein_Complex": "protein_complex",
        "PP_Isoform": "isoform",
        "PP_Protein_Type": "protein_type",
        "PP_Source_Organism": "source_organism",
        "PP_Reference": "reference",
        "Date Data Received": ("date_data_received", False, None, util.date_converter),
        "Date Loaded": ("date_loaded", False, None, util.date_converter),
        "Date Publicly Available": ("date_publicly_available", False, None, util.date_converter),
        "Is Restricted": ("is_restricted", False, False),
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(("cols: ", cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols:
                continue
            properties = cols[i]

            logger.debug(str(("read col: ", i, ", ", properties)))
            required = properties["required"]
            default = properties["default"]
            converter = properties["converter"]
            model_field = properties["model_field"]

            # Todo, refactor to a method
            logger.debug(str(("raw value", value)))
            if converter != None:
                value = converter(value)
            if value == None:
                if default != None:
                    value = default
            if value == None and required == True:
                raise Exception("Field is required: %s, record: %d" % (properties["column_label"], rows))
            logger.debug(str(("model_field: ", model_field, ", value: ", value)))
            initializer[model_field] = value
        try:
            logger.debug(str(("initializer: ", initializer)))
            protein = Protein(**initializer)
            protein.save()
            logger.info(str(("protein created: ", protein)))
            rows += 1
        except Exception, e:
            logger.error(str(("Invalid protein initializer: ", initializer)))
            raise
Esempio n. 4
0
def main(path):
    """
    Read in the Cell
    """
    sheet_name = 'HMS-LINCS cell line metadata'
    sheet = iu.readtable([path, sheet_name, 1]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = {
              'Facility ID':('facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
              'CL_Name':('name',True),
              'CL_ID':'cl_id',
              'CL_Alternate_Name':'alternate_name',
              'CL_Alternate_ID':'alternate_id',
              'CL_Center_Name':'center_name',
              'CL_Center_Specific_ID':'center_specific_id',
              'MGH_ID':('mgh_id',False,None,lambda x:util.convertdata(x,int)),
              'Assay':'assay',
              'CL_Provider_Name':'provider_name',
              'CL_Provider_Catalog_ID':'provider_catalog_id',
              'CL_Batch_ID':'batch_id',
              'CL_Organism':'organism',
              'CL_Organ':'organ',
              'CL_Tissue':'tissue',
              'CL_Cell_Type':'cell_type',
              'CL_Cell_Type_Detail':'cell_type_detail',
              'CL_Disease':'disease',
              'CL_Disease_Detail':'disease_detail',
              'CL_Growth_Properties':'growth_properties',
              'CL_Genetic_Modification':'genetic_modification',
              'CL_Related_Projects':'related_projects',
              'CL_Recommended_Culture_Conditions':'recommended_culture_conditions',
              'CL_Verification_Profile':'verification_profile',
              'CL_Verification_Reference_Profile':'verification_reference_profile',
              'CL_Mutations_Reference':'mutations_reference',
              'CL_Mutations_Explicit':'mutations_explicit',
              'CL_Organism_Gender':'organism_gender',
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              'Is Restricted':('is_restricted',False,False,util.bool_converter)}
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)
            
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value

        try:
            logger.debug(str(('initializer: ', initializer)))
            cell = Cell(**initializer)
            cell.save()
            logger.info(str(('cell created:', cell)))
            rows += 1
        except Exception, e:
            print "Invalid Cell, name: ", r[0]
            raise e
Esempio n. 5
0
def main(path, do_precursors_only):
    """
    Read in the Cell
    """
    sheet_name = 'HMS-LINCS cell line metadata'
    sheet = iu.readtable([path, sheet_name, 1]) # allow for informational header row

    properties = ('model_field','required','default','converter')
    column_definitions = {
        'Facility ID':('facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
        'CL_Name':('name',True),
        'CL_LINCS_ID':'lincs_id',
        'CL_Alternate_Name':'alternative_names',
        'CL_Alternate_ID':'alternative_id',
        'Precursor_Cell':'precursor_facility_batch_id',
        'CL_Organism':'organism',
        'CL_Organ':'organ',
        'CL_Tissue':'tissue',
        'CL_Cell_Type':'cell_type',
        'CL_Cell_Type_Detail':'cell_type_detail',
        'CL_Donor_Sex': 'donor_sex',
        'CL_Donor_Age': ('donor_age_years',False,None,lambda x:util.convertdata(x,int)),
        'CL_Donor_Ethnicity': 'donor_ethnicity',
        'CL_Donor_Health_Status': 'donor_health_status',
        'CL_Disease':'disease',
        'CL_Disease_Detail':'disease_detail',
        'CL_Production_Details': 'production_details',
        'CL_Genetic_Modification':'genetic_modification',
        'CL_Known_Mutations':'mutations_known',
        'CL_Mutation_Citations':'mutation_citations',
        'CL_Verification_Reference_Profile':'verification_reference_profile',
        'CL_Growth_Properties':'growth_properties',
        'CL_Recommended_Culture_Conditions':'recommended_culture_conditions',
        'CL_Relevant_Citations': 'relevant_citations',
        'Usage Note': 'usage_note',
        'CL_Reference_Source': 'reference_source',
        'Reference Source URL': 'reference_source_url',
        
        'Date Data Received':('date_data_received',False,None,util.date_converter),
        'Date Loaded': ('date_loaded',False,None,util.date_converter),
        'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
        'Most Recent Update': ('date_updated',False,None,util.date_converter),
        'Is Restricted':('is_restricted',False,False,util.bool_converter)}
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels, all_sheet_columns_required=False)
            
    rows = 0    
    precursor_map = {}
    precursor_pattern = re.compile(r'HMSL(5\d{4})-(\d+)')
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']
            
            value = convertdata(value)
            if value is not None:
                if converter:
                    try:
                        value = converter(value)
                    except Exception:
                        logger.error('field parse error: %r, value: %r, row: %d',
                            properties['column_label'],value,rows+2)
                        raise 
            if value is None:
                if default is not None:
                    value = default
            if value is None and required:
                raise Exception('Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))

            logger.debug('model_field: %r, value: %r' , model_field, value)
            initializer[model_field] = value
            
        precursor_facility_batch_id = initializer.pop('precursor_facility_batch_id')
        if precursor_facility_batch_id:
            match = precursor_pattern.match(precursor_facility_batch_id)
            if not match:
                raise Exception('Invalid precursor pattern: needs: %s: %r, row: %d'
                    % (precursor_pattern, initializer, rows))
            precursor_map[initializer['facility_id']] = (match.group(1),match.group(2))
        
        if not do_precursors_only:
            try:
                logger.info('initializer: %r', initializer)
                cell = Cell(**initializer)
                cell.save()
                logger.info(str(('cell created:', cell)))
    
                # create a default batch - 0
                CellBatch.objects.create(reagent=cell,batch_id=0)
                
            except Exception, e:
                print "Invalid Cell, name: ", r[0]
                raise e
        
        rows += 1
Esempio n. 6
0
def main(path):
    """
    Read in the Cell
    """
    sheet_name = 'HMS-LINCS cell line metadata'
    sheet = iu.readtable([path, sheet_name, 1]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = {
              'Facility ID':('facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
              'CL_Name':('name',True),
              'CL_LINCS_ID':'lincs_id',
              'CL_Alternate_Name':'alternative_names',
              'CL_Alternate_ID':'alternate_id',
              'CL_Center_Specific_ID':'center_specific_id',
              'MGH_ID':('mgh_id',False,None,lambda x:util.convertdata(x,int)),
              'Assay':'assay',
              'CL_Organism':'organism',
              'CL_Organ':'organ',
              'CL_Tissue':'tissue',
              'CL_Cell_Type':'cell_type',
              'CL_Cell_Type_Detail':'cell_type_detail',
              'CL_Donor_Sex': 'donor_sex',
              'CL_Donor_Age': ('donor_age_years',False,None,lambda x:util.convertdata(x,int)),
              'CL_Donor_Ethnicity': 'donor_ethnicity',
              'CL_Donor_Health_Status': 'donor_health_status',
              'CL_Disease':'disease',
              'CL_Disease_Detail':'disease_detail',
              'CL_Growth_Properties':'growth_properties',
              'CL_Genetic_Modification':'genetic_modification',
              'CL_Related_Projects':'related_projects',
              'CL_Recommended_Culture_Conditions':'recommended_culture_conditions',
              'CL_Verification_Reference_Profile':'verification_reference_profile',
              'CL_Known_Mutations':'mutations_known',
              'CL_Mutations_Citations':'mutations_citations',
              'CL_Molecular_Features': 'molecular_features',
              'CL_Relevant_Citations': 'relevant_citations',
              'CL_Reference_Source': 'reference_source',
              'CL_Reference_Source_ID': 'reference_source_id',
              'Reference Source URL': 'reference_source_url',
              'Usage Note': 'usage_note',
              
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              'Is Restricted':('is_restricted',False,False,util.bool_converter)}
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels, all_sheet_columns_required=False)
            
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value

        try:
            logger.debug(str(('initializer: ', initializer)))
            cell = Cell(**initializer)
            cell.save()
            logger.info(str(('cell created:', cell)))
            rows += 1

            # create a default batch - 0
            CellBatch.objects.create(reagent=cell,batch_id=0)
            
        except Exception, e:
            print "Invalid Cell, name: ", r[0]
            raise e
Esempio n. 7
0
def main(path):
    """
    Read in the Antibody Batches
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 1]) 

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              'AR_Center_Specific_ID': ('antibody_facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
              'AR_Center_Batch_ID': ('batch_id',True,None,lambda x:util.convertdata(x,int)),
              'AR_Center_Name': 'center_name',
              'AR_Provider_Name': 'provider_name',
              'AR_Provider_Catalog_ ID': 'provider_catalog_id',
              'AR_Provider_Batch_ID': 'provider_batch_id',
              'AR_Antibody_Purity': 'antibody_purity',

              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              }
              
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug('cols: %s' % cols)
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i,properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))

            logger.debug('model_field: %s, converted value %r'
                % (model_field, value) )
            initializer[model_field] = value
        try:
            logger.debug('initializer: %s' % initializer)
            
            antibody_facility_id = initializer.pop('antibody_facility_id',None)
            if antibody_facility_id: 
                try:
                    antibody = Antibody.objects.get(facility_id=antibody_facility_id)
                    initializer['reagent'] = antibody
                except ObjectDoesNotExist, e:
                    logger.error('AR_Center_Specific_ID: "%s" does not exist, row: %d' 
                        % (antibody_facility_id,i))
            antibody_batch = AntibodyBatch(**initializer)
            antibody_batch.save()
            logger.info('antibody batch created: %s' % antibody_batch)
            rows += 1
        except Exception, e:
            logger.error("Invalid antibody_batch initializer: %s" % initializer)
            raise
def main(path):
    """
    Read in the Data Working Group sheets
    """
    logger.info("start")
    book = xlrd.open_workbook(path) #open our xls file, there's lots of extra default options in this call, for logging etc. take a look at the docs
 
    #sheet = book.sheets()[0] #book.sheets() returns a list of sheet objects... alternatively...
    #sheet = book.sheet_by_name("qqqq") #we can pull by name
    worksheet = book.sheet_by_index(0) #or by the index it has in excel's sheet collection
    properties = ('model_field','required','default','converter')
    column_definitions = {'table':'table',
                          'field':'field',
                          'alias':'alias',
                          'queryset':'queryset',
                          'show in detail':('show_in_detail',True,False,util.bool_converter),
                          'show in list':('show_in_list',True,False,util.bool_converter),
                          'show_as_extra_field':('show_as_extra_field',False,False,util.bool_converter),
                          'is_lincs_field':('is_lincs_field',True,False,util.bool_converter),
                          'is_unrestricted':('is_unrestricted',False,False,util.bool_converter),
                          'order':('order',True,None,lambda x:util.convertdata(x,int)),
                          'use_for_search_index':('use_for_search_index',True,False,util.bool_converter),
                          'Data Working Group version':'dwg_version',
                          'Unique ID':('unique_id',True),
                          'DWG Field Name':'dwg_field_name',
                          'HMS Field Name':'hms_field_name',
                          'Related to':'related_to',
                          'Description':'description',
                          'Importance (1: essential; 2: desirable / recommended; 3: optional)':'importance',
                          'Comments':'comments',
                          'Ontologies / references considered':'ontology_reference',
                          'Link to ontology / reference':'ontology_reference',
                          'Additional Notes (for development)':'additional_notes',
                          }
       
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    num_rows = worksheet.nrows - 1
    num_cells = worksheet.ncols - 1

    curr_row = 0 # note zero indexed
    row = worksheet.row(curr_row)
    labels = []
    i = -1
    while i < num_cells:
        i += 1
        # Cell Types: 0=Empty, 1=Text, 2=Number, 3=Date, 4=Boolean, 5=Error, 6=Blank
        # cell_type = worksheet.cell_type(curr_row, curr_cell)
        labels.append(str(worksheet.cell_value(curr_row, i)))
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, labels, all_sheet_columns_required=False)
    
    logger.info('delete current table');
    FieldInformation.objects.all().delete()
    
    rows = 0
    while curr_row < num_rows:
        curr_row += 1
        actual_row = curr_row + 1
        row = worksheet.row(curr_row)
        if(logger.isEnabledFor(logging.DEBUG)): logger.debug(str(('row', row)))
        i = -1
        initializer = {}
        while i < num_cells:
            i += 1
            # Cell Types: 0=Empty, 1=Text, 2=Number, 3=Date, 4=Boolean, 5=Error, 6=Blank
            #cell_type = worksheet.cell_type(curr_row, curr_cell)
            value = unicode(worksheet.cell_value(curr_row, i))

            if i not in cols: 
                continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                logger.debug(str(('using converter',converter,value)))
                value = converter(value)
                logger.debug(str(('converted',value)))
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],actual_row))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value

        try:
            logger.debug(str(('initializer: ', initializer)))
            #if((initializer['table'] == None and initializer['queryset'] == None ) or
            if(initializer['field'] == None):
                logger.warn(str(('Note: table entry has no field definition (will be skipped)', initializer, 'current row:', actual_row)))
                continue;
            lfi = FieldInformation(**initializer)
            # check if the table/field exists
            if(lfi.table != None):
                table = models.get_model(APPNAME, lfi.table)
                if( table != None):
                    if(lfi.field not in map(lambda x: x.name,table._meta.fields) ):
                        raise Exception(str(('unknown field: ', lfi.field)))
                else:
                    raise Exception(str(('unknown table', lfi.table )))
            lfi.save()
            logger.info(str(('fieldInformation created:', lfi)))
            rows += 1
        except Exception, e:
            logger.error(str(( "Invalid fieldInformation, initializer so far: ", initializer, 'current row:', actual_row,e)))
            raise e
Esempio n. 9
0
def main(path):
    """
    Read in the smallmolecule batch info
    """
    sheet_name = 'sheet 1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row
                          ])  # Note, skipping the header row by default

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        # NOTE: even though these db field are not integers,
        # it is convenient to convert the read in values to INT to make sure they are not interpreted as float values
        'facility_id':
        ('facility_id', True, None, lambda x: util.convertdata(x, int)),
        'salt_id': ('salt_id', True, None, lambda x: util.convertdata(x, int)),
        'facility_batch_id':
        ('batch_id', True, None, lambda x: util.convertdata(x, int)),
        'provider': ('provider_name', True),
        'provider_catalog_id':
        'provider_catalog_id',
        'provider_sample_id':
        'provider_batch_id',
        'chemical_synthesis_reference':
        'chemical_synthesis_reference',
        'purity':
        'purity',
        'purity_method':
        'purity_method',
        'aqueous_solubility':
        'aqueous_solubility',
        # FIXME: should warn the user if no unit is provided when
        # aqueous_solubility is provided
        'aqueous_solubility_unit':
        'aqueous_solubility_unit',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update': ('date_updated', False, None,
                               util.date_converter),
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions,
                             sheet.labels,
                             all_sheet_columns_required=False)

    rows = 0
    logger.debug(str(('cols: ', cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {'facility_id': None, 'salt_id': None}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))

            if (model_field in small_molecule_lookup):
                small_molecule_lookup[model_field] = value
                if (None not in small_molecule_lookup.values()):
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer['reagent'] = sm
                    except Exception, e:
                        logger.error(
                            str(('sm identifiers not found',
                                 small_molecule_lookup, 'row',
                                 rows + start_row + 2)))
                        raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            smb = SmallMoleculeBatch(**initializer)
            smb.save()
            logger.debug(str(('smb created:', smb)))
            rows += 1
        except Exception, e:
            logger.error(
                str(("Invalid smallmolecule batch initializer: ", initializer,
                     'row', rows + start_row + 2, e)))
            raise
Esempio n. 10
0
def main(path):
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 1]) 

    properties = ('model_field','required','default','converter')
    column_definitions = { 
        'AR_Name': ('name',True),
        'AR_LINCS_ID': 'lincs_id', 
        'AR_Alternative_Name': 'alternative_names',
        'AR_Alternative_ID': 'alternative_id',
        'AR_Center_Canonical_ID': (
            'facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
        'AR_Clone_Name': 'clone_name',
        'AR_RRID': 'rrid',
        'AR_Antibody_Type': 'type',
        'target_protein_center_ids': 'target_protein_center_ids',
        'AR_Non-Protein_Target': 'non_protein_target_name',
        'AR_Target_Organism': 'target_organism',
        'other_target_information': 'other_target_information',    
        'other_human_target_protein_center_ids': 
            'other_human_target_protein_center_ids',
        'AR_Immunogen': 'immunogen',
        'AR_Immunogen_Sequence': 'immunogen_sequence',
        'AR_Antibody_Species': 'species',
        'AR_Antibody_Clonality': 'clonality',
        'AR_Antibody_Isotype': 'isotype',
        'AR_Antibody_Production_Source_Organism': 'source_organism',
        'AR_Antibody_Production_Details': 'production_details',
        'AR_Antibody_Labeling': 'labeling',
        'AR_Antibody_Labeling_Details': 'labeling_details',
        'AR_Relevant_Citations': 'relevant_citations',
        
        'Date Data Received':(
            'date_data_received',False,None,util.date_converter),
        'Date Loaded': ('date_loaded',False,None,util.date_converter),
        'Date Publicly Available': (
            'date_publicly_available',False,None,util.date_converter),
        'Most Recent Update': ('date_updated',False,None,util.date_converter),
        'Is Restricted':('is_restricted',False,False,util.bool_converter)}
              
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    cols = util.find_columns(column_definitions, sheet.labels, 
        all_sheet_columns_required=False)

    rows = 0    
    logger.debug('cols: %s' % cols)
    for row in sheet:
        logger.debug('row %s - %s' %(rows,row))
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i,properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if(value == None or value == 'None'):
                value = None
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))
            if(value and converter != None):
                value = converter(value)

            logger.debug('model_field: %s, converted value %r'
                % (model_field, value) )
            initializer[model_field] = value
        try:
            logger.debug('row: %s, initializer: %s' % (rows,initializer))
            
            target_protein_center_ids = initializer.pop(
                'target_protein_center_ids',None)
            other_human_target_protein_center_ids = initializer.pop(
                'other_human_target_protein_center_ids',None)

            antibody = Antibody.objects.create(**initializer)
            
            if target_protein_center_ids: 
                ids = [x for x in target_protein_center_ids.split(';')]
                try:
                    target_proteins = []
                    for id in ids:
                        id = id[id.index('HMSL')+4:]
                        target_proteins.append(
                            Protein.objects.get(facility_id=id))
                    antibody.target_proteins = target_proteins
                except ObjectDoesNotExist, e:
                    logger.error(
                        'target_protein_center_ids "%s" does not exist, row: %d' 
                        % (id,i))
                    raise
            if other_human_target_protein_center_ids: 
                ids = [x for x in 
                    other_human_target_protein_center_ids.split(';')]
                try:
                    other_target_proteins = []
                    for id in ids:
                        id = id[id.index('HMSL')+4:]
                        other_target_proteins.append(
                            Protein.objects.get(facility_id=id))
                    antibody.other_human_target_proteins = other_target_proteins
                except ObjectDoesNotExist, e:
                    logger.error(
                        'other_human_target_protein_center_ids "%s"'
                        ' does not exist, row: %d' 
                        % (id,i))
                    raise

            antibody.save()
            logger.info('antibody created: %s' % antibody)
            rows += 1

            # create a default batch - 0
            AntibodyBatch.objects.create(reagent=antibody,batch_id=0)
Esempio n. 11
0
def main(path):
 
    properties = ('model_field','required','default','converter')
    get_primary_name = lambda x: x.split(';')[0].strip()
    get_alternate_names = (
        lambda x: '; '.join([x.strip() for x in x.split(';')[1:]]))
    
    labels = { s2p.MOLDATAKEY:('molfile',True),
        'facility_reagent_id': (
            'facility_id',True,None, 
            lambda x: util.convertdata(x[x.index('HMSL')+4:],int)), 
        'salt_id': ('salt_id',True,None, lambda x: util.convertdata(x,int)),
        'lincs_id':('lincs_id',False), 
        'chemical_name':('name',True),
        'alternative_names':'alternative_names',
        'pubchem_cid':'pubchem_cid',
        'chembl_id':'chembl_id',
        'chebi_id':'chebi_id',
        'inchi':'_inchi',
        'inchi_key':'_inchi_key',
        'smiles': ('_smiles',False),
        'molecular_mass':(
            '_molecular_mass',False,None, 
            lambda x: round(util.convertdata(x, float),2)),
        'relevant_citations': '_relevant_citations',
        'molecular_formula':'_molecular_formula',
        'software':'software',
        'date_data_received':('date_data_received',False,None,
                              util.date_converter),
        'date_loaded': ('date_loaded',False,None,util.date_converter),
        'date_publicly_available': ('date_publicly_available',False,None,
                                    util.date_converter),
        'date_updated': ('date_updated',False,None,util.date_converter),
        'is_restricted':('is_restricted',False,False,util.bool_converter)
    }
    labels = util.fill_in_column_definitions(properties,labels)
    
    assert typecheck.isstring(path)
    with open(path) as fh:
        data = fh.read().decode(DEFAULT_ENCODING)

    records = s2p.parse_sdf(data)
    logger.info('rows read: %d ', len(records))
    
    count = 0
    for record in records:
        initializer = {}
        for key,properties in labels.items():
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']
            
            value = record.get(key)

            try:
                if(converter != None):
                    value = converter(value)
                if(value == None ):
                    if( default != None ):
                        value = default
                if(value == 'n/a'): value = None
                if(value == None and  required == True):
                    raise Exception(
                        'Field is required: %r, values: %r, row: %d'
                        % (key,initializer,count))
                initializer[model_field] = value
            except Exception, e:
                logger.exception('invalid input, row: %d', count)
                raise e
        # follows is a kludge, to split up the entered "chemical_name" field, 
        # on ';' - TODO: just have two fields that get entered
        if(initializer['name']):
            initializer['alternative_names']=get_alternate_names(initializer['name'])
            initializer['name']=get_primary_name(initializer['name'])
                
        try:
            sm = SmallMolecule(**initializer)
            sm.save()
            count += 1
            
            # create a default batch - 0
            SmallMoleculeBatch.objects.create(reagent=sm,batch_id=0)
            
        except Exception:
            logger.exception('save failed for: %r, row: %d', initializer, count)
            raise
Esempio n. 12
0
def main(import_file, file_directory, deploy_dir):
    """
    Read in the qc events for batches 
    - version 1 - for small molecule batches
    """
    sheet_name = "Sheet1"
    start_row = 0
    sheet = iu.readtable([import_file, sheet_name, start_row])  # Note, skipping the header row by default

    properties = ("model_field", "required", "default", "converter")
    column_definitions = {
        "facility_id": ("facility_id_for", True, None, lambda x: util.convertdata(x, int)),
        "salt_id": ("salt_id_for", False, None, lambda x: util.convertdata(x, int)),
        "batch_id": ("batch_id_for", True, None, lambda x: util.convertdata(x, int)),
        "QC event date": ("date", True, None, util.date_converter),
        "outcome": ("outcome", True),
        "comment": "comment",
        "is_restricted": ("is_restricted", False, False, util.bool_converter),
        "file1": "file1",
        "file2": "file2",
        "file3": "file3",
        "file4": "file4",
        "file5": "file5",
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(("cols: ", cols)))
    for row in sheet:
        r = util.make_row(row)
        # store each row in a dict
        _dict = {}
        for i, value in enumerate(r):
            if i not in cols:
                continue
            properties = cols[i]

            logger.debug(str(("read col: ", i, ", ", properties)))
            required = properties["required"]
            default = properties["default"]
            converter = properties["converter"]
            model_field = properties["model_field"]

            logger.debug(str(("raw value", value)))
            if converter != None:
                value = converter(value)
            if value == None:
                if default != None:
                    value = default
            if value == None and required == True:
                raise Exception("Field is required: %s, record: %d" % (properties["column_label"], rows))
            logger.debug(str(("model_field: ", model_field, ", value: ", value)))
            _dict[model_field] = value

        logger.debug(str(("dict: ", _dict)))

        files_to_attach = []
        for i in range(10):
            filenameProp = "file%s" % i
            if _dict.get(filenameProp, None):
                fileprop = _dict[filenameProp]
                filepath = os.path.join(file_directory, fileprop)
                if not os.path.exists(filepath):
                    raise Exception(str(("file does not exist:", filepath, "row", rows + start_row)))
                filename = os.path.basename(filepath)
                relative_path = fileprop[: fileprop.index(filename)]

                # Move the file
                dest_dir = deploy_dir
                if not dest_dir:
                    dest_dir = settings.STATIC_AUTHENTICATED_FILE_DIR
                if not os.path.isdir(dest_dir):
                    raise Exception(str(("no such deploy directory, please create it", dest_dir)))
                if relative_path:
                    dest_dir = os.path.join(dest_dir, relative_path)
                    if not os.path.exists(dest_dir):
                        os.makedirs(dest_dir)
                deployed_path = os.path.join(dest_dir, filename)

                logger.debug(str(("deploy", filepath, deployed_path)))
                if os.path.exists(deployed_path):
                    os.remove(deployed_path)
                copy(filepath, deployed_path)
                if not os.path.isfile(deployed_path):
                    raise Exception(str(("could not deploy to", deployed_path)))
                else:
                    logger.debug(str(("successfully deployed to", deployed_path)))

                files_to_attach.append((filename, relative_path))

        initializer = None
        try:
            # create the qc record
            initializer = {
                key: _dict[key]
                for key in ["facility_id_for", "salt_id_for", "batch_id_for", "outcome", "comment", "date"]
            }
            qc_event = QCEvent(**initializer)
            qc_event.save()
            logger.debug(str(("saved", qc_event)))

            # create attached file records
            for (filename, relative_path) in files_to_attach:
                initializer = {
                    "qc_event": qc_event,
                    "filename": filename,
                    "relative_path": relative_path,
                    "is_restricted": _dict["is_restricted"],
                }
                qc_attached_file = QCAttachedFile(**initializer)
                qc_attached_file.save()
                logger.debug(str(("created qc attached file", qc_attached_file)))

            rows += 1

        except Exception, e:
            logger.error(str(("Invalid initializer: ", initializer, "row", rows + start_row + 2, e)))
            raise
Esempio n. 13
0
def main(path):
    sheet_name = 'sheet 1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row])

    properties = ('model_field','required','default','converter')
    column_definitions = { 
        'facility_id': (
            'facility_id',True,None, lambda x: util.convertdata(x,int)),
        'salt_id': (
            'salt_id',True,None, lambda x: util.convertdata(x,int)),
        'facility_batch_id':(
            'batch_id',True,None, lambda x: util.convertdata(x,int)),
        'provider': ('provider_name',False),
        'provider_catalog_id':'provider_catalog_id',
        'provider_sample_id':'provider_batch_id',
        'molecular_weight':(
            '_molecular_weight',False,None, 
            lambda x: util.convertdata(x, float)),
        'molecular_formula':'_molecular_formula',
        'chemical_synthesis_reference':'_chemical_synthesis_reference',
        'purity':'_purity',
        'purity_method':'_purity_method',
        'aqueous_solubility':'aqueous_solubility',
        # FIXME: should warn the user if no unit is provided when 
        # aqueous_solubility is provided
        'aqueous_solubility_unit':'aqueous_solubility_unit',    
        'Date Data Received':(
            'date_data_received',False,None,util.date_converter),
        'Date Loaded': ('date_loaded',False,None,util.date_converter),
        'Date Publicly Available': (
            'date_publicly_available',False,None,util.date_converter),
        'Most Recent Update': (
            'date_updated',False,None,util.date_converter),
        }
    column_definitions = util.fill_in_column_definitions(
        properties,column_definitions)
    
    cols = util.find_columns(column_definitions, sheet.labels,
        all_sheet_columns_required=False)
    
    rows = 0    
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {'facility_id':None, 'salt_id':None}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception(
                    'Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))
            
            if(model_field in small_molecule_lookup):
                small_molecule_lookup[model_field]=value
                if( None not in small_molecule_lookup.values()):
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer['reagent'] = sm
                    except Exception, e:
                        logger.exception(
                            'sm identifiers not found: %r, row: %d', 
                            small_molecule_lookup,rows+start_row+2)
                        raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            smb = SmallMoleculeBatch(**initializer)
            smb.save()
            logger.debug(str(('smb created:', smb)))
            rows += 1
        except Exception, e:
            logger.exception(
                'Invalid smallmolecule batch initializer: %r, row: %d', 
                initializer, rows+start_row+2)
            raise
def main(path):
    """
    Read in the OtherReagent
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 1]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = { 
                          
              'OR_ID': 'lincs_id', 
              'Facility ID': ('facility_id',True),
              'OR_Alternate_ID': 'alternate_id',
              'OR_Primary_Name': ('name',True),
              'OR_Alternate_Name': 'alternative_names',
              'OR_Role': 'role',
              'OR_Reference': 'reference',                          
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              'Is Restricted':('is_restricted',False,False)}

              
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            reagent = OtherReagent(**initializer)
            reagent.save()
            logger.info(str(('OtherReagent created: ', reagent)))
            rows += 1
        except Exception, e:
            logger.error(str(( "Invalid OtherReagent initializer: ", initializer)))
            raise
Esempio n. 15
0
def main(path):
    """
    Read in the Data Working Group sheets
    """
    logger.info(str(('read field information file', path)))

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'table':
        'table',
        'field':
        'field',
        'alias':
        'alias',
        'queryset':
        'queryset',
        'show in detail': ('show_in_detail', True, False, util.bool_converter),
        'show in list': ('show_in_list', True, False, util.bool_converter),
        'show_as_extra_field':
        ('show_as_extra_field', False, False, util.bool_converter),
        'is_lincs_field': ('is_lincs_field', True, False, util.bool_converter),
        'is_unrestricted':
        ('is_unrestricted', False, False, util.bool_converter),
        'list_order':
        ('list_order', True, None, lambda x: util.convertdata(x, int)),
        'detail_order':
        ('detail_order', True, None, lambda x: util.convertdata(x, int)),
        'use_for_search_index': ('use_for_search_index', True, False,
                                 util.bool_converter),
        'Data Working Group version':
        'dwg_version',
        'Unique ID': ('unique_id', True),
        'DWG Field Name':
        'dwg_field_name',
        'HMS Field Name':
        'hms_field_name',
        'Related to':
        'related_to',
        'Description':
        'description',
        'Importance (1: essential; 2: desirable / recommended; 3: optional)':
        'importance',
        'Comments':
        'comments',
        'Ontologies / references considered':
        'ontology_reference',
        'Link to ontology / reference':
        'ontology_reference',
        'Additional Notes (for development)':
        'additional_notes',
    }

    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    with open(path) as f:
        reader = csv.reader(f)

        labels = reader.next()
        cols = util.find_columns(column_definitions,
                                 labels,
                                 all_sheet_columns_required=False)

        logger.info('delete current table')
        FieldInformation.objects.all().delete()

        for j, row in enumerate(reader):
            logger.debug('row %d: %s', j, row)
            initializer = {}
            for i, value in enumerate(row):

                if i not in cols:
                    logger.info(str(('column out of range', j + 1, i)))
                    continue
                properties = cols[i]

                logger.debug(str(('read col: ', i, ', ', properties)))
                required = properties['required']
                default = properties['default']
                converter = properties['converter']
                model_field = properties['model_field']

                # Todo, refactor to a method
                logger.debug(str(('raw value', value)))
                if converter:
                    logger.debug(str(('using converter', converter, value)))
                    value = converter(value)
                    logger.debug(str(('converted', value)))
                # Note: must check the value against None, as False is a valid value
                if value is None:
                    if default != None:
                        value = default
                # Note: must check the value against None, as False is a valid value
                if value is None and required is True:
                    raise Exception('Field is required: %s, record: %d' %
                                    (properties['column_label'], j + 1))
                logger.debug(
                    str(('model_field: ', model_field, ', value: ', value)))
                initializer[model_field] = value

            try:
                logger.debug(str(('initializer: ', initializer)))
                if not initializer['field']:
                    logger.warn(
                        str((
                            'Note: table entry has no field definition (will be skipped)',
                            initializer, 'current row:', j + 1)))
                    continue
                lfi = FieldInformation(**initializer)
                # check if the table/field exists
                if lfi.table:
                    table = models.get_model(APPNAME, lfi.table)
                    if table:
                        if lfi.field not in map(lambda x: x.name,
                                                table._meta.fields):
                            raise Exception(str(
                                ('unknown field: ', lfi.field)))
                    else:
                        raise Exception(str(('unknown table', lfi.table)))
                lfi.save()
                logger.info(str(('fieldInformation created:', lfi)))
            except Exception, e:
                logger.error(
                    str(("Invalid fieldInformation, initializer so far: ",
                         initializer, 'current row:', j + 1, e)))
                raise e
Esempio n. 16
0
def main(path):
    """
    Read in the Antibody
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 0])

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'AR_Name': ('name', True),
        'AR_LINCS_ID':
        'lincs_id',
        'AR_Alternative_Name':
        'alternative_names',
        'AR_Center_Specific_ID':
        ('facility_id', True, None, lambda x: x[x.index('HMSL') + 4:]),
        'AR_Clone_Name':
        'clone_name',
        'AR_RRID':
        'rrid',
        'AR_Antibody_Type':
        'type',
        'target_protein_lincs_id': ('target_protein_lincs_id', False, None,
                                    lambda x: x[x.index('HMSL') + 4:]
                                    if x else None),
        'AR_Non-Protein_Target':
        'non_protein_target_name',
        'AR_Target_Organism':
        'target_organism',
        'AR_Immunogen':
        'immunogen',
        'AR_Immunogen_Sequence':
        'immunogen_sequence',
        'AR_Antibody_Species':
        'species',
        'AR_Antibody_Clonality':
        'clonality',
        'AR_Antibody_Isotype':
        'isotype',
        'AR_Antibody_Production_Source_Organism':
        'source_organism',
        'AR_Antibody_Production_Details':
        'production_details',
        'AR_Antibody_Labeling':
        'labeling',
        'AR_Antibody_Labeling_Details':
        'labeling_details',
        'AR_Relevant_Citations':
        'relevant_citations',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update':
        ('date_updated', False, None, util.date_converter),
        'Is Restricted': ('is_restricted', False, False, util.bool_converter)
    }

    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug('cols: %s' % cols)
    for row in sheet:
        logger.debug('row %s - %s' % (rows, row))
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i, properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if (value == None or value == 'None'):
                value = None
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            if (value and converter != None):
                value = converter(value)

            logger.debug('model_field: %s, converted value %r' %
                         (model_field, value))
            initializer[model_field] = value
        try:
            logger.debug('row: %s, initializer: %s' % (rows, initializer))

            target_protein_lincs_id = initializer.pop(
                'target_protein_lincs_id', None)
            if target_protein_lincs_id:
                try:
                    target_protein = Protein.objects.get(
                        lincs_id=target_protein_lincs_id)
                    initializer['target_protein'] = target_protein
                except ObjectDoesNotExist, e:
                    logger.error(
                        'target_protein_lincs_id "%s" does not exist, row: %d'
                        % (target_protein_lincs_id, i))
            antibody = Antibody(**initializer)
            antibody.save()
            logger.info('antibody created: %s' % antibody)
            rows += 1

            # create a default batch - 0
            AntibodyBatch.objects.create(reagent=antibody, batch_id=0)

        except Exception, e:
            logger.error("Invalid antibody initializer: %s" % initializer)
            raise
Esempio n. 17
0
def readLibraries(path, sheetName):

    sheet = iu.readtable([path, sheetName
                          ])  # Note, skipping the header row by default
    # dict to map spreadsheet fields to the Library fields
    properties = ('model_field', 'required', 'default', 'converter')
    date_parser = lambda x: util.convertdata(x, date)
    column_definitions = {
        'Name': ('name', True),  # TODO use the model to determine if req'd
        'ShortName': ('short_name', True),
        'Library Type':
        'type',
        'Date First Plated': ('date_first_plated', False, None, date_parser),
        'Date Data Received': ('date_data_received', False, None, date_parser),
        'Date Loaded': ('date_loaded', False, None, date_parser),
        'Date Publicly Available':
        ('date_publicly_available', False, None, date_parser),
        'Most Recent Update':
        ('date_updated', False, None, util.date_converter),
        'Is Restricted': ('is_restricted', False, False)
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    libraries = {}
    for row in sheet:
        logger.debug(str(('row raw: ', row)))
        r = util.make_row(row)
        logger.debug(str(('row: ', r)))
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            library = Library(**initializer)
            library.save()
            logger.info(str(('library created', library)))
            libraries[library.short_name] = library
            rows += 1
        except Exception, e:
            logger.error(str(('library initializer problem: ', initializer)))
            raise e
Esempio n. 18
0
def main(path):
    """
    Read in the Antibody
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 0]) 

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              'AR_Name': ('name',True),
              'AR_LINCS_ID': 'lincs_id', 
              'AR_Alternative_Name': 'alternative_names',
              'AR_Center_Specific_ID': ('facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
              'AR_Clone_Name': 'clone_name',
              'AR_RRID': 'rrid',
              'AR_Antibody_Type': 'type',
              'target_protein_lincs_id': (
                  'target_protein_lincs_id',False,None, 
                  lambda x: x[x.index('HMSL')+4:] if x else None ),
              'AR_Non-Protein_Target': 'non_protein_target_name',
              'AR_Target_Organism': 'target_organism',
              'AR_Immunogen': 'immunogen',
              'AR_Immunogen_Sequence': 'immunogen_sequence',
              'AR_Antibody_Species': 'species',
              'AR_Antibody_Clonality': 'clonality',
              'AR_Antibody_Isotype': 'isotype',
              'AR_Antibody_Production_Source_Organism': 'source_organism',
              'AR_Antibody_Production_Details': 'production_details',
              'AR_Antibody_Labeling': 'labeling',
              'AR_Antibody_Labeling_Details': 'labeling_details',
              'AR_Relevant_Citations': 'relevant_citations',

              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              'Is Restricted':('is_restricted',False,False,util.bool_converter)}
              
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug('cols: %s' % cols)
    for row in sheet:
        logger.debug('row %s - %s' %(rows,row))
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i,properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if(value == None or value == 'None'):
                value = None
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))
            if(value and converter != None):
                value = converter(value)

            logger.debug('model_field: %s, converted value %r'
                % (model_field, value) )
            initializer[model_field] = value
        try:
            logger.debug('row: %s, initializer: %s' % (rows,initializer))
            
            target_protein_lincs_id = initializer.pop('target_protein_lincs_id',None)
            if target_protein_lincs_id: 
                try:
                    target_protein = Protein.objects.get(lincs_id=target_protein_lincs_id)
                    initializer['target_protein'] = target_protein
                except ObjectDoesNotExist, e:
                    logger.error('target_protein_lincs_id "%s" does not exist, row: %d' 
                        % (target_protein_lincs_id,i))
            antibody = Antibody(**initializer)
            antibody.save()
            logger.info('antibody created: %s' % antibody)
            rows += 1

            # create a default batch - 0
            AntibodyBatch.objects.create(reagent=antibody,batch_id=0)
            
        except Exception, e:
            logger.error("Invalid antibody initializer: %s" % initializer)
            raise
Esempio n. 19
0
def main(path):
    """
    Read in the Library and LibraryMapping sheets
    """
    libraries = readLibraries(path, 'Library')

    sheet = iu.readtable([path, 'LibraryMapping'])
    properties = ('model_field', 'required', 'default', 'converter')
    date_parser = lambda x: util.convertdata(x, date)
    column_definitions = {
        'Facility':
        ('facility_id', False, None, lambda x: util.convertdata(x, int)),
        'Salt': ('salt_id', False, None, lambda x: util.convertdata(x, int)),
        'Batch': ('batch_id', False, None, lambda x: util.convertdata(x, int)),
        'Is Control': ('is_control', False, False, util.bool_converter),
        'Plate': ('plate', False, None, lambda x: util.convertdata(x, int)),
        'Well':
        'well',
        'Library Name':
        'short_name',
        'Concentration':
        'concentration',
        'Concentration Unit':
        'concentration_unit'
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    small_molecule_batch_lookup = ('reagent', 'batch_id')
    library_mapping_lookup = ('smallmolecule_batch', 'library', 'is_control',
                              'plate', 'well', 'concentration',
                              'concentration_unit')
    rows = 0
    logger.debug(str(('cols: ', cols)))
    for row in sheet:
        current_row = rows + 2
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {'facility_id': None, 'salt_id': None}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception(
                    'Field is required: %s, record: %d' %
                    (properties['column_label'], 'row', current_row))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))

            initializer[model_field] = value

            if (model_field in small_molecule_lookup):
                small_molecule_lookup[model_field] = value
                if (None not in small_molecule_lookup.values()):
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer['reagent'] = sm
                    except Exception, e:
                        raise Exception(
                            str(('sm facility id not found',
                                 small_molecule_lookup, e, 'row',
                                 current_row)))
            elif (model_field == 'short_name'):
                try:
                    library = libraries[value]
                    initializer['library'] = library
                except Exception, e:
                    raise Exception(
                        str(('library short_name not found', value, e, 'row',
                             current_row)))
Esempio n. 20
0
def main(path):
    """
    Read in the Antibody
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 1]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              'AR_Name': ('name',True),
              'AR_LINCS_ID': 'lincs_id', 
              'AR_Alternative_Name': 'alternative_names',
              'AR_Center_ID': ('facility_id', True),
              'AR_Target_Protein': 'target_protein_name',
              'AR_Target_Protein_ID': 'target_protein_uniprot_id',
              'AR_Target_Gene': 'target_gene_name',
              'AR_Target_Gene_ID': 'target_gene_id',
              'AR_Target_Organism': 'target_organism',
              'AR_Immunogen': 'immunogen',
              'AR_Immunogen_Sequence': 'immunogen_sequence',
              'AR_AntibodyClonality': 'antibody_clonality',
              'AR_Source_Organism': 'source_organism',
              'AR_Antibody_Isotype': 'antibody_isotype',
              'AR_Engineering': 'engineering',
              'AR_Antibody_Purity': 'antibody_purity',
              'AR_Antibody_Labeling': 'antibody_labeling',
              'AR_Recommended_Experiment_Type': 'recommended_experiment_type',
              'AR_Relevant_Reference': 'relevant_reference',
              'AR_Specificity': 'specificity',
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              'Is Restricted':('is_restricted',False,False)}

              
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            antibody = Antibody(**initializer)
            antibody.save()
            logger.info(str(('antibody created: ', antibody)))
            rows += 1
        except Exception, e:
            logger.error(str(( "Invalid antibody initializer: ", initializer)))
            raise
def main(path):
    """
    Read in the smallmolecule batch info
    """
    sheet_name = "sheet 1"
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row])  # Note, skipping the header row by default

    properties = ("model_field", "required", "default", "converter")
    column_definitions = {
        # NOTE: even though these db field are not integers,
        # it is convenient to convert the read in values to INT to make sure they are not interpreted as float values
        "facility_id": ("facility_id", True, None, lambda x: util.convertdata(x, int)),
        "salt_id": ("salt_id", True, None, lambda x: util.convertdata(x, int)),
        "facility_batch_id": ("facility_batch_id", True, None, lambda x: util.convertdata(x, int)),
        "provider": ("provider", True),
        "provider_catalog_id": "provider_catalog_id",
        "provider_sample_id": "provider_sample_id",
        "chemical_synthesis_reference": "chemical_synthesis_reference",
        "purity": "purity",
        "purity_method": "purity_method",
        "aqueous_solubility": "aqueous_solubility",
        "aqueous_solubility_unit": "aqueous_solubility_unit",
        "Date Data Received": ("date_data_received", False, None, util.date_converter),
        "Date Loaded": ("date_loaded", False, None, util.date_converter),
        "Date Publicly Available": ("date_publicly_available", False, None, util.date_converter),
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(("cols: ", cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {"facility_id": None, "salt_id": None}
        for i, value in enumerate(r):
            if i not in cols:
                continue
            properties = cols[i]

            logger.debug(str(("read col: ", i, ", ", properties)))
            required = properties["required"]
            default = properties["default"]
            converter = properties["converter"]
            model_field = properties["model_field"]

            # Todo, refactor to a method
            logger.debug(str(("raw value", value)))
            if converter != None:
                value = converter(value)
            if value == None:
                if default != None:
                    value = default
            if value == None and required == True:
                raise Exception("Field is required: %s, record: %d" % (properties["column_label"], rows))
            logger.debug(str(("model_field: ", model_field, ", value: ", value)))

            if model_field in small_molecule_lookup:
                small_molecule_lookup[model_field] = value
                if None not in small_molecule_lookup.values():
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer["smallmolecule"] = sm
                    except Exception, e:
                        logger.error(
                            str(("sm identifiers not found", small_molecule_lookup, "row", rows + start_row + 2))
                        )
                        raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(("initializer: ", initializer)))
            smb = SmallMoleculeBatch(**initializer)
            smb.save()
            logger.debug(str(("smb created:", smb)))
            rows += 1
        except Exception, e:
            logger.error(
                str(("Invalid smallmolecule batch initializer: ", initializer, "row", rows + start_row + 2, e))
            )
            raise
Esempio n. 22
0
def main(import_file,file_directory,deploy_dir):
    """
    Read in the qc events for batches 
    - version 1 - for small molecule batches
    """
    sheet_name = 'Sheet1'
    start_row = 0
    sheet = iu.readtable([import_file, sheet_name, start_row]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              'facility_id': ('facility_id_for',True,None, lambda x: util.convertdata(x,int)),
              'salt_id': ('salt_id_for',False,None, lambda x: util.convertdata(x,int)),
              'batch_id':('batch_id_for',True,None, lambda x: util.convertdata(x,int)),
              'QC event date': ('date',True,None,util.date_converter),
              'outcome': ('outcome',True),
              'comment': 'comment',
              'is_restricted':('is_restricted',False,False,util.bool_converter),
              'file1': 'file1',
              'file2': 'file2',
              'file3': 'file3',
              'file4': 'file4',
              'file5': 'file5',
              }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)
    
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        # store each row in a dict
        _dict = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            _dict[model_field] = value

        logger.debug(str(('dict: ', _dict)))
        
        files_to_attach = []
        for i in range(10):
            filenameProp = 'file%s'%i;
            if _dict.get(filenameProp, None):
                fileprop = _dict[filenameProp]
                filepath = os.path.join(file_directory,fileprop)
                if not os.path.exists(filepath):
                    raise Exception(str(('file does not exist:',filepath,'row',
                        rows+start_row)))
                filename = os.path.basename(filepath)
                relative_path = fileprop[:fileprop.index(filename)]
                
                # Move the file
                dest_dir = deploy_dir
                if not dest_dir:
                    dest_dir = settings.STATIC_AUTHENTICATED_FILE_DIR
                if not os.path.isdir(dest_dir):
                    raise Exception(str(('no such deploy directory, please create it', dest_dir)))
                if relative_path:
                    dest_dir = os.path.join(dest_dir, relative_path)
                    if not os.path.exists(dest_dir):
                        os.makedirs(dest_dir)
                deployed_path = os.path.join(dest_dir, filename)
                    
                logger.debug(str(('deploy',filepath, deployed_path)))
                if os.path.exists(deployed_path):
                    os.remove(deployed_path)
                copy(filepath,deployed_path)
                if not os.path.isfile (deployed_path):
                    raise Exception(str(('could not deploy to', deployed_path)))
                else:
                    logger.debug(str(('successfully deployed to', deployed_path)))
                
                files_to_attach.append((filename,relative_path))
        
        initializer = None
        try:
            # create the qc record
            initializer = {key:_dict[key] for key in 
                ['facility_id_for','salt_id_for','batch_id_for','outcome','comment','date']}
            qc_event = QCEvent(**initializer)
            qc_event.save()
            logger.debug(str(('saved', qc_event)))
            
            # create attached file records
            for (filename,relative_path) in files_to_attach:
                initializer = {
                    'qc_event':qc_event,
                    'filename':filename,
                    'relative_path':relative_path,
                    'is_restricted':_dict['is_restricted']
                    }
                qc_attached_file = QCAttachedFile(**initializer)
                qc_attached_file.save()
                logger.debug(str(('created qc attached file', qc_attached_file)))
            
            rows += 1
            
        except Exception, e:
            logger.error(str(("Invalid initializer: ", initializer, 'row', 
                rows+start_row+2, e)))
            raise
Esempio n. 23
0
def main(path):
    """
    Read in the primary cell batch info
    """
    sheet_name = "Sheet1"
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row])  # Note, skipping the header row by default

    properties = ("model_field", "required", "default", "converter")
    column_definitions = {
        "Facility ID": ("facility_id", True, None, lambda x: x[x.index("HMSL") + 4 :]),
        "PC_Center_Batch_ID": ("batch_id", True, None, lambda x: util.convertdata(x, int)),
        "PC_Center_Specific_Code": "center_specific_code",
        "PC_Provider_Name": "provider_name",
        "PC_Provider_Catalog_ID": "provider_catalog_id",
        "PC_Provider_Batch_ID": "provider_batch_id",
        "PC_Source_Information": "source_information",
        "PC_Date_Received": "date_received",
        "PC_Quality_Verification": "quality_verification",
        "PC_Culture_Conditions": "culture_conditions",
        "PC_Passage_Number": ("passage_number", False, None, lambda x: util.convertdata(x, int)),
        "PC_Transient_Modification": "transient_modification",
        "Date Data Received": ("date_data_received", False, None, util.date_converter),
        "Date Loaded": ("date_loaded", False, None, util.date_converter),
        "Date Publicly Available": ("date_publicly_available", False, None, util.date_converter),
        "Most Recent Update": ("date_updated", False, None, util.date_converter),
    }

    column_definitions = util.fill_in_column_definitions(properties, column_definitions)
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    for row in sheet:

        r = util.make_row(row)
        initializer = {}

        for i, value in enumerate(r):

            if i not in cols:
                continue
            properties = cols[i]

            required = properties["required"]
            default = properties["default"]
            converter = properties["converter"]
            model_field = properties["model_field"]

            if converter != None:
                value = converter(value)
            if value == None:
                if default != None:
                    value = default
            if value == None and required == True:
                raise Exception("Field is required: %s, record: %d" % (properties["column_label"], rows))

            if model_field == "facility_id":
                try:
                    cell = PrimaryCell.objects.get(facility_id=value)
                    initializer["reagent"] = cell
                except:
                    logger.exception("Primary Cell not found: %r, row: %d", value, rows + start_row + 1)
                    raise
            else:
                initializer[model_field] = value
        try:
            logger.debug("initializer: %r", initializer)
            cell = PrimaryCellBatch(**initializer)
            cell.save()
            logger.debug("primary cell batch created: %r", cell)
            rows += 1
        except Exception, e:
            logger.exception("Invalid Primary CellBatch initializer: %r, row: %d", initializer, rows + start_row + 1)
            raise
Esempio n. 24
0
def main(path):
    """
    Read in the Library and LibraryMapping sheets
    """
    libraries = readLibraries(path,'Library')
    
    sheet = iu.readtable([path, 'LibraryMapping'])
    properties = ('model_field','required','default','converter')
    column_definitions = {'Facility':('facility_id',False,None, lambda x: util.convertdata(x,int)),
                          'Salt':('salt_id',False,None, lambda x: util.convertdata(x,int)),
                          'Batch':('facility_batch_id',False,None, lambda x: util.convertdata(x,int)),
                          'Is Control':('is_control',False,False,util.bool_converter),
                          'Plate':('plate',False,None, lambda x: util.convertdata(x,int)),
                          'Well':'well',
                          'Library Name':'short_name',
                          'Concentration': 'concentration',
                          'Concentration Unit':'concentration_unit'
                          }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)
    
    small_molecule_batch_lookup = ('smallmolecule', 'facility_batch_id')
    library_mapping_lookup = ('smallmolecule_batch','library','is_control','plate','well','concentration','concentration_unit')
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        current_row = rows + 2
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {'facility_id':None, 'salt_id':None}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],'row',current_row))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            
            initializer[model_field] = value
            
            if(model_field in small_molecule_lookup):
                small_molecule_lookup[model_field]=value
                if( None not in small_molecule_lookup.values()):
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer['smallmolecule'] = sm
                    except Exception, e:
                        raise Exception(str(('sm facility id not found', small_molecule_lookup,e,'row',current_row)))
            elif(model_field == 'short_name'):
                try:
                    library = libraries[value]
                    initializer['library'] = library
                except Exception, e:
                    raise Exception(str(('library short_name not found', value,e,'row',current_row)))
def main(path):
    """
    Read in the smallmolecule batch info
    """
    sheet_name = 'sheet 1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              # NOTE: even though these db field are not integers, 
              # it is convenient to convert the read in values to INT to make sure they are not interpreted as float values
              'facility_id': ('facility_id',True,None, lambda x: util.convertdata(x,int)),
              'salt_id': ('salt_id',True,None, lambda x: util.convertdata(x,int)),
              'facility_batch_id':('batch_id',True,None, lambda x: util.convertdata(x,int)),
              'provider': ('provider_name',True),
              'provider_catalog_id':'provider_catalog_id',
              'provider_sample_id':'provider_batch_id',
              'chemical_synthesis_reference':'chemical_synthesis_reference',
              'purity':'purity',
              'purity_method':'purity_method',
              'aqueous_solubility':'aqueous_solubility',
              # FIXME: should warn the user if no unit is provided when 
              # aqueous_solubility is provided
              'aqueous_solubility_unit':'aqueous_solubility_unit',    
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels,
        all_sheet_columns_required=False)
    
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        small_molecule_lookup = {'facility_id':None, 'salt_id':None}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            
            if(model_field in small_molecule_lookup):
                small_molecule_lookup[model_field]=value
                if( None not in small_molecule_lookup.values()):
                    try:
                        sm = SmallMolecule.objects.get(**small_molecule_lookup)
                        initializer['reagent'] = sm
                    except Exception, e:
                        logger.error(str(('sm identifiers not found', small_molecule_lookup,'row',rows+start_row+2)))
                        raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            smb = SmallMoleculeBatch(**initializer)
            smb.save()
            logger.debug(str(('smb created:', smb)))
            rows += 1
        except Exception, e:
            logger.error(str(( "Invalid smallmolecule batch initializer: ", initializer, 'row', rows+start_row+2, e)))
            raise
Esempio n. 26
0
def main(path):
    """
    Read in the Protein
    """
    sheet_name = 'HMS-LINCS Kinases'

    # Note, skipping the header row by default
    sheet = iu.readtable([path, sheet_name, 1]) 

    properties = ('model_field','required','default','converter')
    column_definitions = { 
            'PP_Name':('name',True), 
            'PP_LINCS_ID':('facility_id',True,None,lambda x: x[x.index('HMSL')+4:]), 
            'PP_UniProt_ID':'uniprot_id', 
            'PP_Alternate_Name':'alternative_names',
            'PP_Alternate_Name[2]':'alternate_name_2',
            'PP_Provider':'provider',
            'PP_Provider_Catalog_ID':'provider_catalog_id',
            'PP_Batch_ID':'batch_id', 
            'PP_Amino_Acid_Sequence':'amino_acid_sequence',
            'PP_Gene_Symbol':'gene_symbol', 
            'PP_Gene_ID':'gene_id',
            'PP_Protein_Source':'protein_source',
            'PP_Protein_Form':'protein_form', 
            'PP_Mutation':'mutation', 
            'PP_Phosphorylation_State':'phosphlorylation', 
            'PP_Domain':'protein_domain', 
            'PP_Protein_Purity':'protein_purity', 
            'PP_Protein_Complex':'protein_complex', 
            'PP_Isoform':'isoform', 
            'PP_Protein_Type':'protein_type', 
            'PP_Source_Organism':'source_organism', 
            'PP_Reference':'reference',
            'Date Data Received':('date_data_received',False,None,
                                  util.date_converter),
            'Date Loaded': ('date_loaded',False,None,util.date_converter),
            'Date Publicly Available': ('date_publicly_available',False,None,
                                        util.date_converter),
            'Most Recent Update': ('date_updated',False,None,util.date_converter),
            'Is Restricted':('is_restricted',False,False)}
    
    # convert the labels to fleshed out dict's, with strategies for optional, 
    # default and converter
    column_definitions = \
        util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                                    % (properties['column_label'],rows))
            logger.debug(str((
                'model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            protein = Protein(**initializer)
            
            # FIXME: LINCS IDS for Protein
            protein.lincs_id = protein.facility_id
            
            protein.save()
            logger.info(str(('protein created: ', protein)))
            rows += 1
            
            # create a default batch - 0
            ProteinBatch.objects.create(reagent=protein,batch_id=0)
            
        except Exception, e:
            logger.error(str(("Invalid protein initializer: ", initializer, e)))
            raise
Esempio n. 27
0
def main(path):
    """
    Read in the cell batch info
    """
    sheet_name = 'Sheet1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row
                          ])  # Note, skipping the header row by default

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'Facility ID':
        ('facility_id', True, None, lambda x: x[x.index('HMSL') + 4:]),
        'CL_Batch_ID':
        ('batch_id', True, None, lambda x: util.convertdata(x, int)),
        'CL_Provider_Name':
        'provider_name',
        'CL_Provider_Batch_ID':
        'provider_batch_id',
        'CL_Provider_Catalog_ID':
        'provider_catalog_id',
        'CL_Quality_Verification':
        'quality_verification',
        'CL_Transient_Modification':
        'transient_modification',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update': ('date_updated', False, None,
                               util.date_converter),
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(('cols: ', cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))

            if model_field == 'facility_id':
                try:
                    cell = Cell.objects.get(facility_id=value)
                    initializer['reagent'] = cell
                except:
                    logger.error(
                        str(("Cell not found", value, 'row',
                             rows + start_row + 2)))
                    raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            cell = CellBatch(**initializer)
            cell.save()
            logger.debug(str(('cell created:', cell)))
            rows += 1
        except Exception, e:
            logger.error(
                str(("Invalid CellBatch initializer: ", initializer, 'row',
                     rows + start_row + 2, e)))
            raise
Esempio n. 28
0
def main(path):
    """
    Read in the Protein
    """
    sheet_name = 'HMS-LINCS Kinases'

    # Note, skipping the header row by default
    sheet = iu.readtable([path, sheet_name, 1]) 

    properties = ('model_field','required','default','converter')
    column_definitions = { 
            'PP_Name':('name',True), 
            'PP_LINCS_ID':('lincs_id',True,None,lambda x: x[x.index('HMSL')+4:]), 
            'PP_UniProt_ID':'uniprot_id', 
            'PP_Alternate_Name':'alternate_name',
            'PP_Alternate_Name[2]':'alternate_name_2',
            'PP_Provider':'provider',
            'PP_Provider_Catalog_ID':'provider_catalog_id',
            'PP_Batch_ID':'batch_id', 
            'PP_Amino_Acid_Sequence':'amino_acid_sequence',
            'PP_Gene_Symbol':'gene_symbol', 
            'PP_Gene_ID':'gene_id',
            'PP_Protein_Source':'protein_source',
            'PP_Protein_Form':'protein_form', 
            'PP_Mutation':'mutation', 
            'PP_Phosphorylation_State':'phosphlorylation', 
            'PP_Domain':'protein_domain', 
            'PP_Protein_Purity':'protein_purity', 
            'PP_Protein_Complex':'protein_complex', 
            'PP_Isoform':'isoform', 
            'PP_Protein_Type':'protein_type', 
            'PP_Source_Organism':'source_organism', 
            'PP_Reference':'reference',
            'Date Data Received':('date_data_received',False,None,
                                  util.date_converter),
            'Date Loaded': ('date_loaded',False,None,util.date_converter),
            'Date Publicly Available': ('date_publicly_available',False,None,
                                        util.date_converter),
            'Most Recent Update': ('date_updated',False,None,util.date_converter),
            'Is Restricted':('is_restricted',False,False)}
    
    # convert the labels to fleshed out dict's, with strategies for optional, 
    # default and converter
    column_definitions = \
        util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                                    % (properties['column_label'],rows))
            logger.debug(str((
                'model_field: ' , model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            protein = Protein(**initializer)
            protein.save()
            logger.info(str(('protein created: ', protein)))
            rows += 1
        except Exception, e:
            logger.error(str(("Invalid protein initializer: ", initializer, e)))
            raise
Esempio n. 29
0
def read_metadata(meta_sheet):

    properties = ('model_field', 'required', 'default', 'converter')
    field_definitions = {
        'Lead Screener First': 'lead_screener_firstname',
        'Lead Screener Last': 'lead_screener_lastname',
        'Lead Screener Email': 'lead_screener_email',
        'Lab Head First': 'lab_head_firstname',
        'Lab Head Last': 'lab_head_lastname',
        'Lab Head Email': 'lab_head_email',
        'Title': 'title',
        'Facility ID': (
            'facility_id', True, None, lambda x: util.convertdata(x, int)),
        'Summary': 'summary',
        'Protocol': 'protocol',
        'References': 'protocol_references',
        'Date Data Received':(
            'date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available': (
            'date_publicly_available', False, None, util.date_converter),
        'Most Recent Update': (
            'date_updated', False, None, util.date_converter),
        'Is Restricted':('is_restricted', False, False, util.bool_converter),
        'Dataset Type':('dataset_type', False),
        'Bioassay':('bioassay', False),
        'Dataset Keywords':('dataset_keywords', False),
        'Usage Message':('usage_message', False),
        'Dataset Data URL':('dataset_data_url', False),
        'Associated Publication': ('associated_publication', False),
        'Associated Project Summary': ('associated_project_summary', False),
    }
    
    sheet_labels = []
    for i in xrange(meta_sheet.nrows-1):
        row = meta_sheet.row_values(i+1)
        sheet_labels.append(row[0])

    field_definitions = util.fill_in_column_definitions(
        properties, field_definitions)

    cols = util.find_columns(field_definitions, sheet_labels,
        all_column_definitions_required=False)
    
    initializer = {}
    for i in xrange(meta_sheet.nrows-1):
        row = meta_sheet.row_values(i+1)
        
        properties = cols[i]
        value = row[1]
        logger.debug('Metadata raw value %r' % value)

        required = properties['required']
        default = properties['default']
        converter = properties['converter']
        model_field = properties['model_field']

        if converter:
            value = converter(value)
        if not value and default != None:
            value = default
        if not value and required:
            raise Exception(
                'Field is required: %s, record: %d' 
                    % (properties['column_label'], row))
        logger.debug('model_field: %s, value: %r' % ( model_field, value ) )
        initializer[model_field] = value

    return initializer 
def main(path):
    """
    Read in the sdf file
    """
    # map field labels to model fields
    properties = ('model_field','required','default','converter')
    get_primary_name = lambda x: x.split(';')[0].strip()
    get_alternate_names = lambda x: ';'.join([x.strip() for x in x.split(';')[1:]])
    
    labels = { s2p.MOLDATAKEY:('molfile',True),
              # NOTE: even though these db field are not integers, 
              # it is convenient to convert the read in values to INT to make sure they are not interpreted as float values
               'facility_reagent_id': ('facility_id',True,None, lambda x: util.convertdata(x[x.index('HMSL')+4:],int)), 
               'salt_id': ('salt_id',True,None, lambda x: util.convertdata(x,int)),
               'lincs_id':('lincs_id',False), #None,lambda x:util.convertdata(x,int)),
               'chemical_name':('name',True),
               'alternative_names':'alternative_names',
               'pubchem_cid':'pubchem_cid',
               'chembl_id':'chembl_id',
               'chebi_id':'chebi_id',
               'inchi':'_inchi',
               'inchi_key':'_inchi_key',
               'smiles': ('_smiles',True),
               'molecular_mass':('_molecular_mass',False,None, lambda x: round(util.convertdata(x, float),2)),
               'molecular_formula':'_molecular_formula',
               'software':'software',
               # 'concentration':'concentration',
               #'well_type':('well_type',False,'experimental'),
               'is_restricted':('is_restricted',False,False,util.bool_converter)}
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    labels = util.fill_in_column_definitions(properties,labels)
    
    assert typecheck.isstring(path)
    with open(path) as fh:
        data = fh.read().decode(DEFAULT_ENCODING)

    records = s2p.parse_sdf(data)
    logger.info(str(('read rows: ', len(records))))
    
    count = 0
    for record in records:
        logger.debug(str(('record', record)))
        initializer = {}
        for key,properties in labels.items():
            logger.debug(str(('look for key: ', key, ', properties: ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']
            
            value = record.get(key)

            # Todo, refactor to a method
            try:
                logger.debug(str(('raw value', value)))
                if(converter != None):
                    value = converter(value)
                if(value == None ):
                    if( default != None ):
                        value = default
                if(value == 'n/a'): value = None
                if(value == None and  required == True):
                    raise Exception(str(('Field is required: ', key, initializer, 'record:', count)))
                logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
                initializer[model_field] = value
            except Exception, e:
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]      
                logger.error(str((exc_type, fname, exc_tb.tb_lineno)))
                logger.error(str(('invalid input', e, 'count', count)))
                raise e
        # follows is a kludge, to split up the entered "chemical_name" field, on ';' - TODO: just have two fields that get entered
        if(initializer['name']):
            initializer['alternative_names']=get_alternate_names(initializer['name'])
            initializer['name']=get_primary_name(initializer['name'])
                
        if(logger.isEnabledFor(logging.DEBUG)): logger.debug(str(('initializer: ', initializer)))
        try:
            sm = SmallMolecule(**initializer)
            sm.save()
            logger.info(str(('sm created:', sm)))
            count += 1
        except Exception, e:
            logger.error(str(('save failed for: ', initializer, 'error',e, 'count: ', count)))
            raise e
Esempio n. 31
0
def main(path):
    """
    Read in the Antibody Batches
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name, 0])

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'AR_Center_Specific_ID': ('antibody_facility_id', True, None,
                                  lambda x: x[x.index('HMSL') + 4:]),
        'AR_Batch_ID':
        ('batch_id', True, None, lambda x: util.convertdata(x, int)),
        'AR_Provider_Name':
        'provider_name',
        'AR_Provider_Catalog_ ID':
        'provider_catalog_id',
        'AR_Provider_Batch_ID':
        'provider_batch_id',
        'AR_Antibody_Purity':
        'antibody_purity',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update':
        ('date_updated', False, None, util.date_converter),
    }

    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug('cols: %s' % cols)
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i, properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))

            logger.debug('model_field: %s, converted value %r' %
                         (model_field, value))
            initializer[model_field] = value
        try:
            logger.debug('initializer: %s' % initializer)

            antibody_facility_id = initializer.pop('antibody_facility_id',
                                                   None)
            if antibody_facility_id:
                try:
                    antibody = Antibody.objects.get(
                        facility_id=antibody_facility_id)
                    initializer['reagent'] = antibody
                except ObjectDoesNotExist, e:
                    logger.error(
                        'AR_Center_Specific_ID: "%s" does not exist, row: %d' %
                        (antibody_facility_id, i))
            antibody_batch = AntibodyBatch(**initializer)
            antibody_batch.save()
            logger.info('antibody batch created: %s' % antibody_batch)
            rows += 1
        except Exception, e:
            logger.error("Invalid antibody_batch initializer: %s" %
                         initializer)
            raise
Esempio n. 32
0
def main(path):
    """
    Read in the OtherReagent
    """
    sheet_name = 'Sheet1'
    sheet = iu.readtable([path, sheet_name,
                          1])  # Note, skipping the header row by default

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'OR_ID':
        'lincs_id',
        'Facility ID': ('facility_id', True),
        'OR_Alternate_ID':
        'alternate_id',
        'OR_Primary_Name': ('name', True),
        'OR_Alternate_Name':
        'alternative_names',
        'OR_Role':
        'role',
        'OR_Reference':
        'reference',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update':
        ('date_updated', False, None, util.date_converter),
        'Is Restricted': ('is_restricted', False, False)
    }

    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(('cols: ', cols)))
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            # Todo, refactor to a method
            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))
            initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            reagent = OtherReagent(**initializer)
            reagent.save()
            logger.info(str(('OtherReagent created: ', reagent)))
            rows += 1

            # create a default batch - 0
            OtherReagentBatch.objects.create(reagent=reagent, batch_id=0)

        except Exception, e:
            logger.error(
                str(("Invalid OtherReagent initializer: ", initializer)))
            raise
Esempio n. 33
0
def read_metadata(meta_sheet):

    properties = ('model_field', 'required', 'default', 'converter')
    field_definitions = {
        'Lead Screener First':
        'lead_screener_firstname',
        'Lead Screener Last':
        'lead_screener_lastname',
        'Lead Screener Email':
        'lead_screener_email',
        'Lab Head First':
        'lab_head_firstname',
        'Lab Head Last':
        'lab_head_lastname',
        'Lab Head Email':
        'lab_head_email',
        'Title':
        'title',
        'Facility ID':
        ('facility_id', True, None, lambda x: util.convertdata(x, int)),
        'Summary':
        'summary',
        'Protocol':
        'protocol',
        'References':
        'protocol_references',
        'Date Data Received':
        ('date_data_received', False, None, util.date_converter),
        'Date Loaded': ('date_loaded', False, None, util.date_converter),
        'Date Publicly Available':
        ('date_publicly_available', False, None, util.date_converter),
        'Most Recent Update':
        ('date_updated', False, None, util.date_converter),
        'Is Restricted': ('is_restricted', False, False, util.bool_converter),
        'Dataset Type': ('dataset_type', False),
        'Bioassay': ('bioassay', False),
        'Dataset Keywords': ('dataset_keywords', False),
        'Usage Message': ('usage_message', False),
        'Associated Publication': ('associated_publication', False),
        'Associated Project Summary': ('associated_project_summary', False),
    }

    sheet_labels = []
    for i in xrange(meta_sheet.nrows - 1):
        row = meta_sheet.row_values(i + 1)
        sheet_labels.append(row[0])

    field_definitions = util.fill_in_column_definitions(
        properties, field_definitions)

    cols = util.find_columns(field_definitions,
                             sheet_labels,
                             all_column_definitions_required=False)

    initializer = {}
    for i in xrange(meta_sheet.nrows - 1):
        row = meta_sheet.row_values(i + 1)

        properties = cols[i]
        value = row[1]
        logger.debug('Metadata raw value %r' % value)

        required = properties['required']
        default = properties['default']
        converter = properties['converter']
        model_field = properties['model_field']

        if converter:
            value = converter(value)
        if not value and default != None:
            value = default
        if not value and required:
            raise Exception('Field is required: %s, record: %d' %
                            (properties['column_label'], row))
        logger.debug('model_field: %s, value: %r' % (model_field, value))
        initializer[model_field] = value

    return initializer
Esempio n. 34
0
def main(path):
    """
    Read in the cell batch info
    """
    sheet_name = 'Sheet1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row]) # Note, skipping the header row by default

    properties = ('model_field','required','default','converter')
    column_definitions = { 
              'Facility ID':('facility_id',True,None, lambda x: x[x.index('HMSL')+4:]),
              'CL_Batch_ID':('batch_id',True,None,lambda x:util.convertdata(x,int)),
              'CL_Provider_Name':'provider_name',
              'CL_Provider_Batch_ID':'provider_batch_id',
              'CL_Provider_Catalog_ID':'provider_catalog_id',
              'CL_Quality_Verification':'quality_verification',
              'CL_Transient_Modification': 'transient_modification',
              'Date Data Received':('date_data_received',False,None,util.date_converter),
              'Date Loaded': ('date_loaded',False,None,util.date_converter),
              'Date Publicly Available': ('date_publicly_available',False,None,util.date_converter),
              'Most Recent Update': ('date_updated',False,None,util.date_converter),
              }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(properties,column_definitions)
    
    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)
    
    rows = 0    
    logger.debug(str(('cols: ' , cols)))
    for row in sheet:
        r = util.make_row(row)
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug(str(('raw value', value)))
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' % (
                    properties['column_label'],rows))
            logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
            
            if model_field == 'facility_id':
                try:
                    cell = Cell.objects.get(facility_id=value)
                    initializer['reagent'] = cell
                except:
                    logger.error(str(("Cell not found", value, 'row',rows+start_row+2)))
                    raise
            else:
                initializer[model_field] = value
        try:
            logger.debug(str(('initializer: ', initializer)))
            cell = CellBatch(**initializer)
            cell.save()
            logger.debug(str(('cell created:', cell)))
            rows += 1
        except Exception, e:
            logger.error(str(( "Invalid CellBatch initializer: ", initializer, 
                'row', rows+start_row+2, e)))
            raise
Esempio n. 35
0
def main(path):
    sheet_name = 'sheet 1'
    start_row = 1
    sheet = iu.readtable([path, sheet_name, start_row])

    properties = ('model_field','required','default','converter')
    column_definitions = { 
        'facility_id': (
            'facility_id',True,None, lambda x: util.convertdata(x,int)),
        'facility_batch_id':(
            'batch_id',True,None, lambda x: util.convertdata(x,int)),
        'provider': ('provider_name',False),
        'provider_catalog_id':'provider_catalog_id',
        'provider_sample_id':'provider_batch_id',
        'Date Data Received':(
            'date_data_received',False,None,util.date_converter),
        'Date Loaded': ('date_loaded',False,None,util.date_converter),
        'Date Publicly Available': (
            'date_publicly_available',False,None,util.date_converter),
        'Most Recent Update': (
            'date_updated',False,None,util.date_converter),
        }
    column_definitions = util.fill_in_column_definitions(
        properties,column_definitions)
    
    cols = util.find_columns(column_definitions, sheet.labels,
        all_sheet_columns_required=False)
    
    rows = 0    
    logger.debug('cols: %s' % cols)
    for row in sheet:
        r = util.make_row(row)
        dict = {}
        initializer = {}
        for i,value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug('read col: %d: %s' % (i,properties))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug('raw value %r' % value)
            if(converter != None):
                value = converter(value)
            if(value == None ):
                if( default != None ):
                    value = default
            if(value == None and  required == True):
                raise Exception('Field is required: %s, record: %d' 
                    % (properties['column_label'],rows))

            logger.debug('model_field: %s, converted value %r'
                % (model_field, value) )
            initializer[model_field] = value
        try:
            logger.debug('initializer: %s' % initializer)
            
            facility_id = initializer.pop('facility_id',None)
            try:
                other_reagent = OtherReagent.objects.get(facility_id=facility_id)
                initializer['reagent'] = other_reagent
            except ObjectDoesNotExist, e:
                logger.error('facility_id: "%s" does not exist, row: %d' 
                    % (facility_id,i))
            batch = OtherReagentBatch(**initializer)
            batch.save()
            logger.debug('batch created: %s', batch)
            rows += 1
        except Exception, e:
            logger.error("Invalid other_reagent_batch initializer: %s" % initializer)
            raise
Esempio n. 36
0
def main(import_file, file_directory, deploy_dir):
    """
    Read in the qc events for batches 
    - version 1 - for small molecule batches
    """
    sheet_name = 'Sheet1'
    start_row = 0
    sheet = iu.readtable([import_file, sheet_name, start_row
                          ])  # Note, skipping the header row by default

    properties = ('model_field', 'required', 'default', 'converter')
    column_definitions = {
        'facility_id':
        ('facility_id_for', True, None, lambda x: util.convertdata(x, int)),
        'salt_id':
        ('salt_id_for', False, None, lambda x: util.convertdata(x, int)),
        'batch_id':
        ('batch_id_for', True, None, lambda x: util.convertdata(x, int)),
        'QC event date': ('date', True, None, util.date_converter),
        'outcome': ('outcome', True),
        'comment':
        'comment',
        'is_restricted': ('is_restricted', False, False, util.bool_converter),
        'file1':
        'file1',
        'file2':
        'file2',
        'file3':
        'file3',
        'file4':
        'file4',
        'file5':
        'file5',
    }
    # convert the labels to fleshed out dict's, with strategies for optional, default and converter
    column_definitions = util.fill_in_column_definitions(
        properties, column_definitions)

    # create a dict mapping the column ordinal to the proper column definition dict
    cols = util.find_columns(column_definitions, sheet.labels)

    rows = 0
    logger.debug(str(('cols: ', cols)))
    for row in sheet:
        r = util.make_row(row)
        # store each row in a dict
        _dict = {}
        for i, value in enumerate(r):
            if i not in cols: continue
            properties = cols[i]

            logger.debug(str(('read col: ', i, ', ', properties)))
            required = properties['required']
            default = properties['default']
            converter = properties['converter']
            model_field = properties['model_field']

            logger.debug(str(('raw value', value)))
            if (converter != None):
                value = converter(value)
            if (value == None):
                if (default != None):
                    value = default
            if (value == None and required == True):
                raise Exception('Field is required: %s, record: %d' %
                                (properties['column_label'], rows))
            logger.debug(
                str(('model_field: ', model_field, ', value: ', value)))
            _dict[model_field] = value

        logger.debug(str(('dict: ', _dict)))

        files_to_attach = []
        for i in range(10):
            filenameProp = 'file%s' % i
            if _dict.get(filenameProp, None):
                fileprop = _dict[filenameProp]
                filepath = os.path.join(file_directory, fileprop)
                if not os.path.exists(filepath):
                    raise Exception(
                        str(('file does not exist:', filepath, 'row',
                             rows + start_row)))
                filename = os.path.basename(filepath)
                relative_path = fileprop[:fileprop.index(filename)]

                # Move the file
                dest_dir = deploy_dir
                if not dest_dir:
                    dest_dir = settings.STATIC_AUTHENTICATED_FILE_DIR
                if not os.path.isdir(dest_dir):
                    raise Exception(
                        str(('no such deploy directory, please create it',
                             dest_dir)))
                if relative_path:
                    dest_dir = os.path.join(dest_dir, relative_path)
                    if not os.path.exists(dest_dir):
                        os.makedirs(dest_dir)
                deployed_path = os.path.join(dest_dir, filename)

                logger.debug(str(('deploy', filepath, deployed_path)))
                if os.path.exists(deployed_path):
                    os.remove(deployed_path)
                copy(filepath, deployed_path)
                if not os.path.isfile(deployed_path):
                    raise Exception(str(
                        ('could not deploy to', deployed_path)))
                else:
                    logger.debug(
                        str(('successfully deployed to', deployed_path)))

                files_to_attach.append((filename, relative_path))

        initializer = None
        try:
            # create the qc record
            initializer = {
                key: _dict[key]
                for key in [
                    'facility_id_for', 'salt_id_for', 'batch_id_for',
                    'outcome', 'comment', 'date'
                ]
            }
            qc_event = QCEvent(**initializer)
            qc_event.save()
            logger.debug(str(('saved', qc_event)))

            # create attached file records
            for (filename, relative_path) in files_to_attach:
                initializer = {
                    'qc_event': qc_event,
                    'filename': filename,
                    'relative_path': relative_path,
                    'is_restricted': _dict['is_restricted']
                }
                qc_attached_file = QCAttachedFile(**initializer)
                qc_attached_file.save()
                logger.debug(
                    str(('created qc attached file', qc_attached_file)))

            rows += 1

        except Exception, e:
            logger.error(
                str(("Invalid initializer: ", initializer, 'row',
                     rows + start_row + 2, e)))
            raise
Esempio n. 37
0
def main(path):
    """
    Read in the Data Working Group sheets
    """
    logger.info(str(('read field information file', path)))
    
    properties = ('model_field','required','default','converter')
    column_definitions = {
        'table':'table',
        'field':'field',
        'alias':'alias',
        'queryset':'queryset',
        'show in detail':('show_in_detail',True,False,util.bool_converter),
        'show in list':('show_in_list',True,False,util.bool_converter),
        'show_as_extra_field':('show_as_extra_field',False,False,util.bool_converter),
        'is_lincs_field':('is_lincs_field',True,False,util.bool_converter),
        'is_unrestricted':('is_unrestricted',False,False,util.bool_converter),
        'list_order':('list_order',True,None,lambda x:util.convertdata(x,int)),
        'detail_order':('detail_order',True,None,lambda x:util.convertdata(x,int)),
        'use_for_search_index':('use_for_search_index',True,False,util.bool_converter),
        'Data Working Group version':'dwg_version',
        'Unique ID':('unique_id',True),
        'DWG Field Name':'dwg_field_name',
        'HMS Field Name':'hms_field_name',
        'Related to':'related_to',
        'Description':'description',
        'Importance (1: essential; 2: desirable / recommended; 3: optional)':'importance',
        'Comments':'comments',
        'Ontologies / references considered':'ontology_reference',
        'Link to ontology / reference':'ontology_reference',
        'Additional Notes (for development)':'additional_notes',
        }
       
    column_definitions = util.fill_in_column_definitions(
        properties,column_definitions)

    with open(path) as f:
        reader = csv.reader(f)

        labels = reader.next()
        cols = util.find_columns(
            column_definitions, labels, all_sheet_columns_required=False)
        
        logger.info('delete current table');
        FieldInformation.objects.all().delete()
        
        for j,row in enumerate(reader):
            logger.debug('row %d: %s', j, row)
            initializer = {}
            for i,value in enumerate(row):
    
                if i not in cols: 
                    logger.info(str(('column out of range',j+1, i)))
                    continue
                properties = cols[i]
    
                logger.debug(str(('read col: ', i, ', ', properties)))
                required = properties['required']
                default = properties['default']
                converter = properties['converter']
                model_field = properties['model_field']
    
                # Todo, refactor to a method
                logger.debug(str(('raw value', value)))
                if converter:
                    logger.debug(str(('using converter',converter,value)))
                    value = converter(value)
                    logger.debug(str(('converted',value)))
                # Note: must check the value against None, as False is a valid value
                if value is None:
                    if default != None:
                        value = default
                # Note: must check the value against None, as False is a valid value
                if value is None and required is True:
                    raise Exception('Field is required: %s, record: %d' 
                        % (properties['column_label'],j+1))
                logger.debug(str(('model_field: ' , model_field, ', value: ', value)))
                initializer[model_field] = value
    
            try:
                logger.debug(str(('initializer: ', initializer)))
                if not initializer['field']:
                    logger.warn(str((
                        'Note: table entry has no field definition (will be skipped)', 
                        initializer, 'current row:', j+1)))
                    continue;
                lfi = FieldInformation(**initializer)
                # check if the table/field exists
                if lfi.table:
                    table = models.get_model(APPNAME, lfi.table)
                    if table:
                        if lfi.field not in map(lambda x: x.name,table._meta.fields):
                            raise Exception(str(('unknown field: ', lfi.field)))
                    else:
                        raise Exception(str(('unknown table', lfi.table )))
                lfi.save()
                logger.info(str(('fieldInformation created:', lfi)))
            except Exception, e:
                logger.error(str(( 
                    "Invalid fieldInformation, initializer so far: ", 
                    initializer, 'current row:', j+1,e)))
                raise e