Esempio n. 1
0
def main(argv=None):
    """Load in arguments to calculate mean wind direction from ensemble
       realizations."""

    cli_specific_arguments = [(['--backup_method'],
                               {'dest': 'backup_method',
                                'default': 'neighbourhood',
                                'choices': ['neighbourhood',
                                            'first_realization'],
                                'help': ('Backup method to use if '
                                         'there is low confidence in'
                                         ' the wind_direction. '
                                         'Options are first_realization'
                                         ' or neighbourhood, '
                                         'first_realization should only '
                                         'be used with global lat-lon data. '
                                         'Default is neighbourhood.')})]

    cli_definition = {'central_arguments': ('input_file', 'output_file'),
                      'specific_arguments': cli_specific_arguments,
                      'description': ('Run wind direction to calculate mean'
                                      ' wind direction from '
                                      'ensemble realizations')}

    args = ArgParser(**cli_definition).parse_args(args=argv)

    wind_direction = load_cube(args.input_filepath)

    # Returns 3 cubes - r_vals and confidence_measure cubes currently
    # only contain experimental data to be used for further research.
    bmethod = args.backup_method
    cube_mean_wdir, _, _ = (
        WindDirection(backup_method=bmethod).process(wind_direction))

    save_netcdf(cube_mean_wdir, args.output_filepath)
Esempio n. 2
0
def main(argv=None):
    """Load in the arguments and ensure they are set correctly. Then run
    the time-lagged ensembles on the input cubes.
    """
    parser = ArgParser(
        description='This combines the realizations from different forecast '
        'cycles into one cube. It does this by taking an input '
        'CubeList containing forecasts from different cycles and '
        'merges them into a single cube, removing any metadata '
        'that does not match.')
    parser.add_argument('input_filenames',
                        metavar='INPUT_FILENAMES',
                        nargs="+",
                        type=str,
                        help='Paths to input NetCDF files for the time-lagged '
                        'ensemble to combine the realizations.')
    parser.add_argument('output_file',
                        metavar='OUTPUT_FILE',
                        help='The output file for the processed NetCDF.')
    args = parser.parse_args(args=argv)

    # Load the cubes
    cubes = iris.cube.CubeList([])
    for filename in args.input_filenames:
        new_cube = load_cube(filename)
        cubes.append(new_cube)

    # Process Cube
    result = process(cubes)

    # Save Cube
    save_netcdf(result, args.output_file)
def main(argv=None):
    """Load in arguments for wind-gust diagnostic.
    Wind-gust and Wind-speed data should be supplied along with the required
    percentile value. The wind-gust diagnostic will be the Max of the specified
    percentile data.
    Currently:

        * Typical gusts is
          MAX(wind-gust(50th percentile),wind-speed(95th percentile))
        * Extreme gust is
          MAX(wind-gust(95th percentile),wind-speed(100th percentile))

    If no percentile values are supplied the code defaults
    to values for Typical gusts.
    """
    parser = ArgParser(
        description="Calculate revised wind-gust data using a specified "
        "percentile of wind-gust data and a specified percentile "
        "of wind-speed data through the WindGustDiagnostic plugin. "
        "The wind-gust diagnostic will be the Max of the specified "
        "percentile data."
        "Currently Typical gusts is "
        "MAX(wind-gust(50th percentile),wind-speed(95th percentile))"
        "and Extreme gust is "
        "MAX(wind-gust(95th percentile),wind-speed(100th percentile)). "
        "If no percentile values are supplied the code defaults "
        "to values for Typical gusts.")
    parser.add_argument("input_filegust",
                        metavar="INPUT_FILE_GUST",
                        help="A path to an input Wind Gust Percentile"
                        " NetCDF file")
    parser.add_argument("input_filews",
                        metavar="INPUT_FILE_WINDSPEED",
                        help="A path to an input Wind Speed Percentile"
                        " NetCDF file")
    parser.add_argument("output_filepath",
                        metavar="OUTPUT_FILE",
                        help="The output path for the processed NetCDF")
    parser.add_argument("--percentile_gust",
                        metavar="PERCENTILE_GUST",
                        default="50.0",
                        help="Percentile of wind-gust required."
                        " Default=50.0",
                        type=float)
    parser.add_argument("--percentile_ws",
                        metavar="PERCENTILE_WIND_SPEED",
                        default="95.0",
                        help="Percentile of wind-speed required."
                        " Default=95.0",
                        type=float)

    args = parser.parse_args(args=argv)
    # Load Cube
    gust_cube = load_cube(args.input_filegust)
    speed_cube = load_cube(args.input_filews)
    # Process Cube
    result = process(gust_cube, speed_cube, args.percentile_gust,
                     args.percentile_ws)
    # Save Cube
    save_netcdf(result, args.output_filepath)
def main(argv=None):
    """Load in arguments and get going."""
    parser = ArgParser(description=('Read the input landmask, and correct '
                                    'to boolean values.'))
    parser.add_argument('--force',
                        dest='force',
                        default=False,
                        action='store_true',
                        help=('If True, ancillaries will be generated '
                              'even if doing so will overwrite existing '
                              'files.'))
    parser.add_argument('input_filepath_standard',
                        metavar='INPUT_FILE_STANDARD',
                        help='A path to an input NetCDF file to be processed')
    parser.add_argument('output_filepath',
                        metavar='OUTPUT_FILE',
                        help='The output path for the processed NetCDF')
    args = parser.parse_args(args=argv)

    # Check if improver ancillary already exists.
    if not os.path.exists(args.output_filepath) or args.force:
        landmask = load_cube(args.input_filepath_standard)
        land_binary_mask = CorrectLandSeaMask().process(landmask)
        save_netcdf(land_binary_mask, args.output_filepath)
    else:
        print('File already exists here: ', args.output_filepath)
Esempio n. 5
0
def main(argv=None):
    """ Calculate the UV index using the data
    in the input cubes."""
    parser = ArgParser(
        description="Calculates the UV index.")
    parser.add_argument("radiation_flux_upward",
                        metavar="RADIATION_FLUX_UPWARD",
                        help="Path to a NetCDF file of radiation flux "
                        "in uv upward at surface.")
    parser.add_argument("radiation_flux_downward",
                        metavar="RADIATION_FLUX_DOWNWARD",
                        help="Path to a NetCDF file of radiation flux "
                        "in uv downward at surface.")
    parser.add_argument("output_filepath", metavar="OUTPUT_FILE",
                        help="The output path for the processed NetCDF")

    args = parser.parse_args(args=argv)

    # Load Cube
    rad_uv_up = load_cube(args.radiation_flux_upward)
    rad_uv_down = load_cube(args.radiation_flux_downward)

    # Process Cube
    result = process(rad_uv_up, rad_uv_down)
    # Save Cube
    save_netcdf(result, args.output_filepath)
Esempio n. 6
0
def main(argv=None):
    """
    Translate meta-data relating to the grid_id attribute from StaGE version
    1.1.0 to StaGE version 1.2.0.
    """

    cli_definition = {
        'central_arguments': ['input_file', 'output_file'],
        'specific_arguments': [],
        'description': ('Translates meta-data relating to the '
                        'grid_id attribute from StaGE version '
                        '1.1.0 to StaGE version 1.2.0. '
                        'Files that have no "grid_id" attribute '
                        'are not recognised as v1.1.0 and are '
                        'not changed. Has no effect if '
                        'input_file and output_file are the '
                        'same and contain a cube with non '
                        'v1.1.0 meta-data')
    }

    args = ArgParser(**cli_definition).parse_args(args=argv)

    cube = load_cube(args.input_filepath)
    cube_changed = update_stage_v110_metadata(cube)

    # Create normalised file paths to make them comparable
    in_file_norm = os.path.normpath(args.input_filepath)
    out_file_norm = os.path.normpath(args.output_filepath)
    if cube_changed or in_file_norm != out_file_norm:
        # Ensure data are not lazy in case we are writing back to the same
        # file.
        cube.data
        save_netcdf(cube, args.output_filepath)
Esempio n. 7
0
def main(argv=None):
    """Load arguments"""
    parser = ArgParser(description='Calculates probabilities of occurrence '
                       'between thresholds')
    parser.add_argument('input_file',
                        metavar='INPUT_FILE',
                        help='Path to NetCDF file containing probabilities '
                        'above or below thresholds')
    parser.add_argument('output_file',
                        metavar='OUTPUT_FILE',
                        help='Path to NetCDF file to write probabilities of '
                        'occurrence between thresholds')
    parser.add_argument('threshold_ranges',
                        metavar='THRESHOLD_RANGES',
                        help='Path to json file specifying threshold ranges')
    parser.add_argument('--threshold_units',
                        metavar='THRESHOLD_UNITS',
                        type=str,
                        default=None,
                        help='Units in which thresholds are specified')
    args = parser.parse_args(args=argv)

    # Load Cube and json
    cube = load_cube(args.input_file)
    with open(args.threshold_ranges) as input_file:
        # read list of thresholds from json file
        threshold_ranges = json.load(input_file)

    # Process Cube
    result = process(cube,
                     threshold_ranges,
                     threshold_units=args.threshold_units)

    # Save Cube
    save_netcdf(result, args.output_file)
Esempio n. 8
0
def main(argv=None):
    """ Load in the arguments for feels like temperature and ensure they are
    set correctly. Then calculate the feels like temperature using the data
    in the input cubes."""
    parser = ArgParser(
        description="This calculates the feels like temperature using a "
                    "combination of the wind chill index and Steadman's "
                    "apparent temperature equation.")
    parser.add_argument("temperature", metavar="TEMPERATURE",
                        help="Path to a NetCDF file of air temperatures at "
                        "screen level.")
    parser.add_argument("wind_speed", metavar="WIND_SPEED",
                        help="Path to the NetCDF file of wind speed at 10m.")
    parser.add_argument("relative_humidity", metavar="RELATIVE_HUMIDITY",
                        help="Path to the NetCDF file of relative humidity "
                        "at screen level.")
    parser.add_argument("pressure", metavar="PRESSURE",
                        help="Path to a NetCDF file of mean sea level "
                        "pressure.")
    parser.add_argument("output_filepath", metavar="OUTPUT_FILE",
                        help="The output path for the processed NetCDF")

    args = parser.parse_args(args=argv)
    # Load Cubes
    temperature = load_cube(args.temperature)
    wind_speed = load_cube(args.wind_speed)
    relative_humidity = load_cube(args.relative_humidity)
    pressure = load_cube(args.pressure)
    # Process Cube
    result = process(temperature, wind_speed, relative_humidity, pressure)
    # Save Cube
    save_netcdf(result, args.output_filepath)
Esempio n. 9
0
def main(argv=None):
    """
    Translate meta-data relating to the grid_id attribute from StaGE version
    1.1.0 to StaGE version 1.2.0.
    """

    cli_definition = {
        'central_arguments': ['input_file', 'output_file'],
        'specific_arguments': [],
        'description': ('Translates meta-data relating to the '
                        'grid_id attribute from StaGE version '
                        '1.1.0 to StaGE version 1.2.0. '
                        'Files that have no "grid_id" attribute '
                        'are not recognised as v1.1.0 and are '
                        'not changed. Has no effect if '
                        'input_file and output_file are the '
                        'same and contain a cube with non '
                        'v1.1.0 meta-data')
    }

    args = ArgParser(**cli_definition).parse_args(args=argv)
    # Load Cube
    cube = load_cube(args.input_filepath, no_lazy_load=True)
    # Process Cube
    cube_changed = process(cube)

    # Save Cube
    # Create normalised file paths to make them comparable
    in_file_norm = os.path.normpath(args.input_filepath)
    out_file_norm = os.path.normpath(args.output_filepath)
    if cube_changed or in_file_norm != out_file_norm:
        save_netcdf(cube, args.output_filepath)
    def test_adding_multiple_arguments(self):
        """Test that we can successfully add multiple arguments to the
        ArgParser."""

        # we will not actually pass anything in, so the Namespace will receive
        # the defaults (if any) - only check the keys of the Namespace derived
        # dictionary
        args_to_add = [(['--foo'], {}),
                       (['--bar', '--b'], {})]

        expected_namespace_keys = ['foo', 'bar']  # + compulsory...

        # explicitly pass nothing in - will only have compulsory arguments
        # and the ones we added...
        parser = ArgParser(central_arguments=None,
                           specific_arguments=None)

        parser.add_arguments(args_to_add)
        result_args = parser.parse_args()
        result_args = vars(result_args).keys()
        # we could also add compulsory arguments to expected_namespace_keys
        # and then assertItemsEqual - (order unimportant), but this
        # is unnecessary - just use loop:
        # (or we could patch compulsory arguments to be an empty dictionary)
        for expected_arg in expected_namespace_keys:
            self.assertIn(expected_arg, result_args)
def main(argv=None):
    """Generate target grid with a halo around the source file grid."""

    parser = ArgParser(description='Generate grid with halo from a source '
                       'domain input file. The grid is populated with zeroes.')
    parser.add_argument('input_file',
                        metavar='INPUT_FILE',
                        help="NetCDF file "
                        "containing data on a source grid.")
    parser.add_argument('output_file',
                        metavar='OUTPUT_FILE',
                        help="NetCDF "
                        "file defining the target grid with additional halo.")
    parser.add_argument('--halo_radius',
                        metavar='HALO_RADIUS',
                        default=162000,
                        type=float,
                        help="Size of halo (in m) with which to "
                        "pad the input grid.  Default is 162 000 m.")
    args = parser.parse_args(args=argv)

    # Load Cube
    cube = load_cube(args.input_file)

    # Process Cube
    result = process(cube, args.halo_radius)

    # Save Cube
    save_netcdf(result, args.output_file)
def main(argv=None):
    r"""
    Load arguments and run ProbabilitiesFromPercentiles plugin.

    Plugin generates probabilities at a fixed threshold (height) from a set of
    (height) percentiles.

    Example:

        Snow-fall level::

            Reference field: Percentiled snow fall level (m ASL)
            Other field: Orography (m ASL)

            300m ----------------- 30th Percentile snow fall level
            200m ----_------------ 20th Percentile snow fall level
            100m ---/-\----------- 10th Percentile snow fall level
            000m --/---\----------  0th Percentile snow fall level
            ______/     \_________ Orogaphy

        The orography heights are compared against the heights that correspond
        with percentile values to find the band in which they fall, then
        interpolated linearly to obtain a probability of snow level at / below
        the ground surface.
    """
    parser = ArgParser(
        description="Calculate probability from a percentiled field at a "
        "2D threshold level.  Eg for 2D percentile levels at different "
        "heights, calculate probability that height is at ground level, where"
        " the threshold file contains a 2D topography field.")
    parser.add_argument("percentiles_filepath",
                        metavar="PERCENTILES_FILE",
                        help="A path to an input NetCDF file containing a "
                        "percentiled field")
    parser.add_argument("threshold_filepath",
                        metavar="THRESHOLD_FILE",
                        help="A path to an input NetCDF file containing a "
                        "threshold value at which probabilities should be "
                        "calculated.")
    parser.add_argument("output_filepath",
                        metavar="OUTPUT_FILE",
                        help="The output path for the processed NetCDF")
    parser.add_argument("output_diagnostic_name",
                        metavar="OUTPUT_DIAGNOSTIC_NAME",
                        type=str,
                        help="Name for data in output file e.g. "
                        "probability_of_snow_falling_level_below_ground_level")
    args = parser.parse_args(args=argv)

    # Load Cubes
    threshold_cube = load_cube(args.threshold_filepath)
    percentiles_cube = load_cube(args.percentiles_filepath)

    # Process Cubes
    probability_cube = process(percentiles_cube, threshold_cube,
                               args.output_diagnostic_name)

    # Save Cubes
    save_netcdf(probability_cube, args.output_filepath)
Esempio n. 13
0
def main(argv=None):
    """Load in arguments and get going."""
    parser = ArgParser(
        description="Calculate the continuous falling snow level ")
    parser.add_argument("temperature", metavar="TEMPERATURE",
                        help="Path to a NetCDF file of air temperatures at"
                        " heights (m) at the points for which the continuous "
                        "falling snow level is being calculated.")
    parser.add_argument("relative_humidity", metavar="RELATIVE_HUMIDITY",
                        help="Path to a NetCDF file of relative_humidities at"
                        " heights (m) at the points for which the continuous "
                        "falling snow level is being calculated.")
    parser.add_argument("pressure", metavar="PRESSURE",
                        help="Path to a NetCDF file of air pressures at"
                        " heights (m) at the points for which the continuous "
                        "falling snow level is being calculated.")
    parser.add_argument("orography", metavar="OROGRAPHY",
                        help="Path to a NetCDF file containing "
                        "the orography height in m of the terrain "
                        "over which the continuous falling snow level is "
                        "being calculated.")
    parser.add_argument("land_sea_mask", metavar="LAND_SEA_MASK",
                        help="Path to a NetCDF file containing "
                        "the binary land-sea mask for the points "
                        "for which the continuous falling snow level is "
                        "being calculated. Land points are set to 1, sea "
                        "points are set to 0.")
    parser.add_argument("output_filepath", metavar="OUTPUT_FILE",
                        help="The output path for the processed NetCDF")
    parser.add_argument("--precision", metavar="NEWTON_PRECISION",
                        default=0.005, type=float,
                        help="Precision to which the wet bulb temperature "
                        "is required: This is used by the Newton iteration "
                        "default value is 0.005")
    parser.add_argument("--falling_level_threshold",
                        metavar="FALLING_LEVEL_THRESHOLD",
                        default=90.0, type=float,
                        help=("Cutoff threshold for the wet-bulb integral used"
                              " to calculate the falling snow level. This "
                              "threshold indicates the level at which falling "
                              "snow is deemed to have melted to become rain. "
                              "The default value is 90.0, an empirically "
                              "derived value."))
    args = parser.parse_args(args=argv)

    # Load Cubes
    temperature = load_cube(args.temperature, no_lazy_load=True)
    relative_humidity = load_cube(args.relative_humidity, no_lazy_load=True)
    pressure = load_cube(args.pressure, no_lazy_load=True)
    orog = load_cube(args.orography, no_lazy_load=True)
    land_sea = load_cube(args.land_sea_mask, no_lazy_load=True)

    # Process Cube
    result = process(temperature, relative_humidity, pressure, orog,
                     land_sea, args.precision, args.falling_level_threshold)

    # Save Cube
    save_netcdf(result, args.output_filepath)
Esempio n. 14
0
    def test_adding_empty_argument_list_does_nothing(self):
        """Test that attempting to add an empty list of argspecs to the
        ArgParser does not add any new arguments."""

        args_to_add = []

        # add a specific (optional) argument - ensures that even if there are
        # no compulsory arguments, we have something...
        # adding arguments after calling parse_args/args will do nothing, so
        # instead create 2 instances:
        parser1 = ArgParser(central_arguments=None,
                            specific_arguments=[[['--optional'], {}]])

        parser2 = ArgParser(central_arguments=None,
                            specific_arguments=[[['--optional'], {}]])

        parser2.add_arguments(args_to_add)
        self.assertEqual(parser1.parse_args(), parser2.parse_args())
Esempio n. 15
0
    def test_argparser_compulsory_args_has_profile(self):
        """Test that creating an ArgParser instance with the compulsory
        arguments adds the profiling options."""

        expected_profile_options = ['profile', 'profile_file']
        parser = ArgParser(central_arguments=None, specific_arguments=None)
        args = parser.parse_args()
        args = vars(args).keys()
        self.assertCountEqual(args, expected_profile_options)
Esempio n. 16
0
def main(argv=None):
    """Parser to accept input data and an output destination before invoking
    the weather symbols plugin.
    """

    diagnostics = interrogate_decision_tree('high_resolution')
    n_files = len(diagnostics)
    dlist = (' - {}\n' * n_files)

    diagnostics_global = interrogate_decision_tree('global')
    n_files_global = len(diagnostics_global)
    dlist_global = (' - {}\n' * n_files_global)

    parser = ArgParser(
        description='Calculate gridded weather symbol codes.\nThis plugin '
        'requires a specific set of input diagnostics, where data\nmay be in '
        'any units to which the thresholds given below can\nbe converted:\n' +
        dlist.format(*diagnostics) + '\n\n or for global data\n\n' +
        dlist_global.format(*diagnostics_global),
        formatter_class=RawTextHelpFormatter)

    parser.add_argument(
        'input_filepaths',
        metavar='INPUT_FILES',
        nargs="+",
        help='Paths to files containing the required input diagnostics.')
    parser.add_argument('output_filepath',
                        metavar='OUTPUT_FILE',
                        help='The output path for the processed NetCDF.')
    parser.add_argument("--wxtree",
                        metavar="WXTREE",
                        default="high_resolution",
                        choices=["high_resolution", "global"],
                        help="Weather Code tree.\n"
                        "Choices are high_resolution or global.\n"
                        "Default=high_resolution.",
                        type=str)

    args = parser.parse_args(args=argv)

    # Load Cube
    cubes = load_cubelist(args.input_filepaths, no_lazy_load=True)
    required_number_of_inputs = n_files
    if args.wxtree == 'global':
        required_number_of_inputs = n_files_global
    if len(cubes) != required_number_of_inputs:
        msg = ('Incorrect number of inputs: files {} gave {} cubes' +
               ', {} required').format(args.input_filepaths, len(cubes),
                                       required_number_of_inputs)
        raise argparse.ArgumentTypeError(msg)

    # Process Cube
    result = process(cubes, args.wxtree)

    # Save Cube
    save_netcdf(result, args.output_filepath)
Esempio n. 17
0
    def test_error_raised(self, args='foo', method='bar'):
        """Test that an exception is raised containing the args and method."""

        msg = ("Method: {} does not accept arguments: {}".format(method, args))

        # argparser will write to stderr independently of SystemExit
        with open(os.devnull, 'w') as file_handle:
            with patch('sys.stderr', file_handle):
                with self.assertRaises(SystemExit, msg=msg):
                    ArgParser().wrong_args_error(args, method)
Esempio n. 18
0
    def test_adding_single_argument_with_unexpected_length_argspec(self):
        """Test that attempting to add an argument to the ArgParser when
        the wrong format argspec raises an exception."""

        # length of argspec is 3 - this is unexpected
        args_to_add = [(['--foo'], 'bar', {})]

        parser = ArgParser(central_arguments=None, specific_arguments=None)

        with self.assertRaises(AttributeError):
            parser.add_arguments(args_to_add)
Esempio n. 19
0
def main(argv=None):
    """Invoke data extraction."""

    parser = ArgParser(description='Extracts subset of data from a single '
                       'input file, subject to equality-based constraints.')
    parser.add_argument('input_file',
                        metavar='INPUT_FILE',
                        help="File containing a dataset to extract from.")
    parser.add_argument('output_file',
                        metavar='OUTPUT_FILE',
                        help="File to write the extracted dataset to.")
    parser.add_argument('constraints',
                        metavar='CONSTRAINTS',
                        nargs='+',
                        help='The constraint(s) to be applied.  These must be'
                        ' of the form "key=value", eg "threshold=1".  Scalars'
                        ', boolean and string values are supported.  Comma-'
                        'separated lists (eg "key=[value1,value2]") are '
                        'supported. These comma-separated lists can either '
                        'extract all values specified in the list or '
                        'all values specified within a range e.g. '
                        'key=[value1:value2]. When a range is specified, '
                        'this is inclusive of the endpoints of the range.')
    parser.add_argument('--units',
                        metavar='UNITS',
                        nargs='+',
                        default=None,
                        help='Optional: units of coordinate constraint(s) to '
                        'be applied, for use when the input coordinate '
                        'units are not ideal (eg for float equality). If '
                        'used, this list must match the CONSTRAINTS list in '
                        'order and length (with null values set to None).')
    parser.add_argument('--ignore-failure',
                        action='store_true',
                        default=False,
                        help='Option to ignore constraint match failure and '
                        'return the input cube.')
    args = parser.parse_args(args=argv)

    # Load Cube
    cube = load_cube(args.input_file)

    # Process Cube
    output_cube = process(cube, args.constraints, args.units)

    # Save Cube
    if output_cube is None and args.ignore_failure:
        save_netcdf(cube, args.output_file)
    elif output_cube is None:
        msg = "Constraint(s) could not be matched in input cube"
        raise ValueError(msg)
    else:
        save_netcdf(output_cube, args.output_file)
Esempio n. 20
0
    def test_adding_argument_with_defined_kwargs_dict_has_defualt(self):
        """Test that we can successfully add an argument to the ArgParser,
        when the argspec contained kwargs, and that the default value is
        captured."""

        args_to_add = [(['--one'], {'default': 1})]

        parser = ArgParser(central_arguments=None, specific_arguments=None)

        parser.add_arguments(args_to_add)
        result_args = parser.parse_args()
        # `--one` was not passed in, so we pick up the default - let's check
        # they agree...
        self.assertEqual(1, result_args.one)
Esempio n. 21
0
    def test_adding_argument_with_defined_kwargs_dict(self):
        """Test that we can successfully add an argument to the ArgParser,
        when the argspec contained kwargs."""

        # length of argspec is 2...
        args_to_add = [(['--foo'], {'default': 1})]
        expected_arg = 'foo'

        parser = ArgParser(central_arguments=None, specific_arguments=None)

        parser.add_arguments(args_to_add)
        result_args = parser.parse_args()
        result_args = vars(result_args).keys()
        self.assertIn(expected_arg, result_args)
Esempio n. 22
0
    def test_create_argparser_fails_with_unknown_centralized_argument(self):
        """Test that we raise an exception when attempting to retrieve
        centralized arguments which are not centralized argument dictionary."""

        centralized_arguments = {'foo': (['--foo'], {})}

        central_args_to_fetch = ('missing_central_arg', )
        # patch the CENTRALIZED_ARGUMENTS so we know that `missing_central_arg`
        # is not there, and we can raise an exception
        with patch('improver.argparser.ArgParser.CENTRALIZED_ARGUMENTS',
                   centralized_arguments):
            with self.assertRaises(KeyError):
                ArgParser(central_arguments=central_args_to_fetch,
                          specific_arguments=None)
Esempio n. 23
0
    def test_create_argparser_with_no_arguments(self):
        """Test that creating an ArgParser with no arguments has no
        arguments."""

        compulsory_arguments = {}

        # it doesn't matter what the centralized arguments are, because we
        # select None of them - we only need to patch the COMPULSORY_ARGUMENTS
        # to ensure there are none of them
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            parser = ArgParser(central_arguments=None, specific_arguments=None)
            args = parser.parse_args()
            args = vars(args).keys()
            self.assertEqual(len(args), 0)
Esempio n. 24
0
    def test_create_argparser_only_compulsory_arguments(self):
        """Test that creating an ArgParser with only compulsory arguments
        adds only the compulsory arguments."""

        compulsory_arguments = {'foo': (['--foo'], {})}

        # it doesn't matter what the centralized arguments are, because we
        # select None of them - only patch COMPULSORY_ARGUMENTS so we know
        # what to expect
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            parser = ArgParser(central_arguments=None, specific_arguments=None)
            args = parser.parse_args()
            args = vars(args).keys()
            self.assertCountEqual(args, ['foo'])
Esempio n. 25
0
    def test_create_argparser_only_specific_arguments(self):
        """Test that creating an ArgParser with only specific arguments
        adds only the specific arguments."""

        compulsory_arguments = {}
        specific_arguments = [(['--foo'], {})]

        # it doesn't matter what the centralized arguments are, because we
        # select None of them - patch the COMPULSORY_ARGUMENTS to be an empty
        # dict so that we don't add any of them
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            parser = ArgParser(central_arguments=None,
                               specific_arguments=specific_arguments)
            args = parser.parse_args()
            args = vars(args).keys()
            self.assertCountEqual(args, ['foo'])
Esempio n. 26
0
    def test_create_argparser_compulsory_and_specfic_arguments(self):
        """Test that creating an ArgParser with compulsory and specific
        arguments adds both of these and no others."""

        compulsory_arguments = {'foo': (['--foo'], {})}
        specific_arguments = [(['--bar'], {})]

        # it doesn't matter what the centralized arguments are, because we
        # select None of them - patch only the COMPULSORY_ARGUMENTS so we know
        # that `foo` is added from here
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            parser = ArgParser(central_arguments=None,
                               specific_arguments=specific_arguments)
            args = parser.parse_args()
            args = vars(args).keys()
            self.assertCountEqual(args, ['foo', 'bar'])
Esempio n. 27
0
def main(argv=None):
    """Parser to accept input data and an output destination before invoking
    the wet bulb temperature plugin. Also accepted is an optional
    convergence_condition argument that can be used to specify the tolerance of
    the Newton iterator used to calculate the wet bulb temperatures."""

    parser = ArgParser(
        description='Calculate a field of wet bulb temperatures.')
    parser.add_argument('temperature',
                        metavar='TEMPERATURE',
                        help='Path to a NetCDF file of air temperatures at '
                        'the points for which the wet bulb temperatures are '
                        'being calculated.')
    parser.add_argument('relative_humidity',
                        metavar='RELATIVE_HUMIDITY',
                        help='Path to a NetCDF file of relative humidities at '
                        'the points for for which the wet bulb temperatures '
                        'are being calculated.')
    parser.add_argument('pressure',
                        metavar='PRESSURE',
                        help='Path to a NetCDF file of air pressures at the '
                        'points for which the wet bulb temperatures are being'
                        ' calculated.')
    parser.add_argument('output_filepath',
                        metavar='OUTPUT_FILE',
                        help='The output path for the processed NetCDF.')
    parser.add_argument('--convergence_condition',
                        metavar='CONVERGENCE_CONDITION',
                        type=float,
                        default=0.05,
                        help='The convergence condition for the Newton '
                        'iterator in K. When the wet bulb temperature '
                        'stops changing by more than this amount between'
                        ' iterations, the solution is accepted.')

    args = parser.parse_args(args=argv)
    # Load Cubes
    temperature = load_cube(args.temperature)
    relative_humidity = load_cube(args.relative_humidity)
    pressure = load_cube(args.pressure)
    # Process Cube
    result = process(temperature, relative_humidity, pressure,
                     args.convergence_condition)
    # Save Cube
    save_netcdf(result, args.output_filepath)
Esempio n. 28
0
    def test_create_argparser_compulsory_and_centralized_arguments(self):
        """Test that creating an ArgParser with compulsory and centralized
        arguments adds both of these and no others."""

        compulsory_arguments = {'foo': (['--foo'], {})}
        centralized_arguments = {'bar': (['--bar'], {})}

        # patch the COMPULSORY_ARGUMENTS so we know that `foo` exists
        # and the CENTRALIZED_ARGUMENTS so we know that `bar` exists.
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            with patch('improver.argparser.ArgParser.CENTRALIZED_ARGUMENTS',
                       centralized_arguments):
                parser = ArgParser(central_arguments=['bar'],
                                   specific_arguments=None)
                args = parser.parse_args()
                args = vars(args).keys()
                self.assertCountEqual(args, ['foo', 'bar'])
Esempio n. 29
0
    def test_create_argparser_only_centralized_arguments(self):
        """Test that creating an ArgParser with only centralized arguments
        adds only the selected centralized arguments."""

        compulsory_arguments = {}
        centralized_arguments = {'foo': (['--foo'], {})}

        # patch the COMPULSORY_ARGUMENTS to an empty dict (so there are none)
        # and patch CENTRALIZED_ARGUMENTS so we know that `foo` can be selected
        # from it
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            with patch('improver.argparser.ArgParser.CENTRALIZED_ARGUMENTS',
                       centralized_arguments):
                parser = ArgParser(central_arguments=['foo'],
                                   specific_arguments=None)
                args = parser.parse_args()
                args = vars(args).keys()
                self.assertCountEqual(args, ['foo'])
Esempio n. 30
0
    def test_create_argparser_all_arguments(self):
        """Test that creating an ArgParser with compulsory, centralized and
        specific arguments adds the arguments from all 3 collections."""

        compulsory_arguments = {'foo': (['--foo'], {})}
        centralized_arguments = {'bar': (['--bar'], {})}
        specific_arguments = [(['--baz'], {})]

        # patch both the COMPULSORY_ARGUMENTS and CENTRALIZED_ARGUMENTS, so
        # that `foo` and `bar` are added from these (respectively)
        with patch('improver.argparser.ArgParser.COMPULSORY_ARGUMENTS',
                   compulsory_arguments):
            with patch('improver.argparser.ArgParser.CENTRALIZED_ARGUMENTS',
                       centralized_arguments):
                parser = ArgParser(central_arguments=['bar'],
                                   specific_arguments=specific_arguments)
                args = parser.parse_args()
                args = vars(args).keys()
                self.assertCountEqual(args, ['foo', 'bar', 'baz'])