Esempio n. 1
0
def genotype_ibs_segments(genotype,
                          id1,
                          id2,
                          snps,
                          error_filter='median',
                          error_filter_length=5,
                          margin=0.0,
                          min_ibs_len_snp=400,
                          debug=False):
    '''Return Identical-by-State (IBS >= 1) segments between two genoypes of samples id1 and id2
    in the SNP range [snp[0],snp[1]) (if snp is a tuple) or the subset of SNPs, if snps is an array.
    
    See ibs_segments() for a description of optional parameters.'''
    num_snps = genotype.num_snps
    g = genotype.data
    g1 = recode.recode_single_genotype(g[snps, id1, :])
    g2 = recode.recode_single_genotype(g[snps, id2, :])
    d = (recode.ibs_state(g1, g2) == 0).astype(np.byte)

    # Consider informative or the specified SNPs only
    filtered_diff = filter_diff(d, error_filter, error_filter_length)
    error_snps = snps[np.nonzero(d - filtered_diff)[0]]

    # Detect edges as non-zero gradient points; output sufficiently long segments
    if np.size(filtered_diff) == 0:
        # No data to consider ==> no IBD intervals can be identified
        segments = []
    else:
        # Convert recombination locations to segments of no recombination; filter short segments
        bp = genotype.snp['base_pair']
        #print segment.segments_with_value(filtered_diff, 0, min_ibs_len_snp)
        segments = [
            Segment(((x[0], x[1])), [id1, id2],
                    (bp[x[0]], segment.stop_bp(bp, x[1], num_snps)),
                    error_snps=segment.in_segment(error_snps, x),
                    collapse_to_set=False) for x in
            segment.segments_with_value(filtered_diff, 0, min_ibs_len_snp)
        ]

    # Cut segment margins
    if margin >= constants.SMALL_FLOAT:
        segments = [
            s for s in (s.middle_part(
                genotype.nearest_snp, bp, margin, collapse_to_set=False)
                        for s in segments) if s
        ]

    # Restrict errors to those inside segments
    segment_set = SegmentSet(segments,
                             np.array(util.flattened_meshgrid(reduce(list.__add__, (s.error_snps.tolist() for s in segments)),
                                                              np.array([id1, id2])), dtype=int) \
                             if segments else gt.empty_errors_array())
    if debug:
        print 'ibs_segments()', segment_set
        print 'errors', segment_set.errors
    return segment_set
Esempio n. 2
0
def genotype_ibs_segments(genotype, id1, id2, snps,
                          error_filter='median', error_filter_length=5, margin=0.0,
                          min_ibs_len_snp=400, debug=False):
    '''Return Identical-by-State (IBS >= 1) segments between two genoypes of samples id1 and id2
    in the SNP range [snp[0],snp[1]) (if snp is a tuple) or the subset of SNPs, if snps is an array.
    
    See ibs_segments() for a description of optional parameters.'''
    num_snps = genotype.num_snps
    g = genotype.data
    g1 = recode.recode_single_genotype(g[snps, id1, :])
    g2 = recode.recode_single_genotype(g[snps, id2, :])
    d = (recode.ibs_state(g1, g2) == 0).astype(np.byte)

    # Consider informative or the specified SNPs only
    filtered_diff = filter_diff(d, error_filter, error_filter_length)
    error_snps = snps[np.nonzero(d - filtered_diff)[0]]
    
    # Detect edges as non-zero gradient points; output sufficiently long segments
    if np.size(filtered_diff) == 0:
        # No data to consider ==> no IBD intervals can be identified
        segments = []
    else:
        # Convert recombination locations to segments of no recombination; filter short segments
        bp = genotype.snp['base_pair']
        #print segment.segments_with_value(filtered_diff, 0, min_ibs_len_snp)
        segments = [Segment(((x[0], x[1])), [id1, id2], (bp[x[0]], segment.stop_bp(bp, x[1], num_snps)),
                            error_snps=segment.in_segment(error_snps, x), collapse_to_set=False)
                    for x in segment.segments_with_value(filtered_diff, 0, min_ibs_len_snp)]
    
    # Cut segment margins
    if margin >= constants.SMALL_FLOAT:
        segments = [s for s in (s.middle_part(genotype.nearest_snp, bp, margin, collapse_to_set=False)
                                for s in segments) if s]

    # Restrict errors to those inside segments
    segment_set = SegmentSet(segments,
                             np.array(util.flattened_meshgrid(reduce(list.__add__, (s.error_snps.tolist() for s in segments)),
                                                              np.array([id1, id2])), dtype=int) \
                             if segments else gt.empty_errors_array())
    if debug:
        print 'ibs_segments()', segment_set
        print 'errors', segment_set.errors
    return segment_set
Esempio n. 3
0
def ibs_segments(haplotype,
                 id1,
                 id2,
                 hap1_type,
                 hap2_type,
                 snps=None,
                 include_alt_phase=False,
                 error_filter='median',
                 error_filter_length=5,
                 length_bound=None,
                 min_segment_length=INDETERMINATE,
                 margin=0.0,
                 debug=False):
    '''Return 1) Identical-by-State (IBS) segments separated by recombination events between two
    sample haplotypes (id1, hap1_type) and (id2, hap2_type). The 2-D output array's ith row format is
    
    (segment_start, segment_stop),
    (id1, hap1), (id2, hap2), 
    (segment_start_bp, segment_stop_bp, segment_length_in_bp, num_errors_in_segment) 
    
    The SNP range is [segment_start, segment_stop) where start=inclusive and stop is exclusive.
    2) List of het_snp indices at which there are likely genotype errors.
        
    Options:
    snps - list of SNPs to base the comparison on. For parent-child comparisons, these should
    be heterozygous SNPs in the parent's genotype, distinguishing its haplotypes
    and used to locate segments. For unphased-phased individuals, these should be the list of
    homozygous SNPs at the unphased individual (those that have data).
    If not specified, all SNPs are used.
    
    length_bound - minimum segment length bound type:
        None: no lower bound enforced 
        'base_pair': output segments of at least min_segment_length [base pair]
        'snp': output segments of at least min_segment_length consecutive SNPs out of the snps list.
               This is useful only if snps includes all SNPs (or is None) 
        *NOTE*: min_segment_length''s units are interpreted differently depending on length_bound.
         
    margin = fraction of segment to discard near the endpoints (margin/2 is removed from each side).'''

    if debug:
        print 'Computing IBD segments between haplotypes (%d,%d), (%d,%d); filter %s length %d' % \
        (id1, hap1_type, id2, hap2_type, error_filter, error_filter_length)
    d = diff.all_diffs(haplotype.data,
                       id1,
                       id2,
                       hap1_type=hap1_type,
                       hap2_type=hap2_type)[0]
    # Segment length, as defined by the input parameters
    segment_length = lambda f: np.inf if not length_bound else (
        f.length
        if length_bound == 'base_pair' else f.num_snps)  # @UnusedVariable

    # Consider informative or the specified SNPs only
    snps = snps if snps is not None else haplotype.snp_range
    snps = np.intersect1d(snps, np.where(d != INDETERMINATE)[0])
    d_snps = d[snps]
    filtered_diff = filter_diff(d_snps, error_filter, error_filter_length)
    error_snps = snps[np.nonzero(d_snps - filtered_diff)[0]]

    # Detect edges as non-zero gradient points; output sufficiently long segments
    bp = haplotype.snp['base_pair']
    num_snps = haplotype.num_snps
    if np.size(filtered_diff) == 0:
        # No data to consider ==> no IBD intervals can be identified
        segments = []
    else:
        deriv = ndimage.convolve(filtered_diff, [1, -1])
        edge = np.where(deriv != 0)[0]
        initial_phase = hap1_type if filtered_diff[0] == 0 else 1 - hap1_type
        if debug:
            print 'initial_phase', initial_phase  # , 'edge', edge
        # Convert recombination locations to segments of no recombination; filter short segments
        segments = [
            f for f in (
                Segment(((x[0], x[1])),
                        set(((id1, x[2]), (id2, hap2_type))), (
                            bp[x[0]], segment.stop_bp(bp, x[1], num_snps)),
                        error_snps=segment.in_segment(error_snps, x))
                for x in segment.edges_to_segments(
                    snps, edge, initial_phase, haplotype.num_snps, hap1_type))
            if segment_length(f) >= min_segment_length
        ]

    # Cut segment margins
    if margin >= constants.SMALL_FLOAT:
        segments = [
            s for s in (s.middle_part(haplotype.nearest_snp, bp, margin)
                        for s in segments) if s
        ]

    # Restrict errors to those inside segments
    segment_set = SegmentSet(segments,
                             np.array(util.flattened_meshgrid(reduce(list.__add__, (s.error_snps.tolist() for s in segments)),
                                                                        np.array([id1, id2])), dtype=int) \
                             if segments else gt.empty_errors_array())
    if debug:
        print 'ibs_segments()', segment_set
        print 'errors', segment_set.errors
    return segment_set
Esempio n. 4
0
def ibs_segments(haplotype, id1, id2, hap1_type, hap2_type, snps=None, include_alt_phase=False,
                 error_filter='median', error_filter_length=5,
                 length_bound=None, min_segment_length=INDETERMINATE, margin=0.0, debug=False):
    '''Return 1) Identical-by-State (IBS) segments separated by recombination events between two
    sample haplotypes (id1, hap1_type) and (id2, hap2_type). The 2-D output array's ith row format is
    
    (segment_start, segment_stop),
    (id1, hap1), (id2, hap2), 
    (segment_start_bp, segment_stop_bp, segment_length_in_bp, num_errors_in_segment) 
    
    The SNP range is [segment_start, segment_stop) where start=inclusive and stop is exclusive.
    2) List of het_snp indices at which there are likely genotype errors.
        
    Options:
    snps - list of SNPs to base the comparison on. For parent-child comparisons, these should
    be heterozygous SNPs in the parent's genotype, distinguishing its haplotypes
    and used to locate segments. For unphased-phased individuals, these should be the list of
    homozygous SNPs at the unphased individual (those that have data).
    If not specified, all SNPs are used.
    
    length_bound - minimum segment length bound type:
        None: no lower bound enforced 
        'base_pair': output segments of at least min_segment_length [base pair]
        'snp': output segments of at least min_segment_length consecutive SNPs out of the snps list.
               This is useful only if snps includes all SNPs (or is None) 
        *NOTE*: min_segment_length''s units are interpreted differently depending on length_bound.
         
    margin = fraction of segment to discard near the endpoints (margin/2 is removed from each side).'''
    
    if debug:
        print 'Computing IBD segments between haplotypes (%d,%d), (%d,%d); filter %s length %d' % \
        (id1, hap1_type, id2, hap2_type, error_filter, error_filter_length)
    d = diff.all_diffs(haplotype.data, id1, id2, hap1_type=hap1_type, hap2_type=hap2_type)[0]
    # Segment length, as defined by the input parameters 
    segment_length = lambda f: np.inf if not length_bound else (f.length if length_bound == 'base_pair' else f.num_snps)  # @UnusedVariable
    
    # Consider informative or the specified SNPs only
    snps = snps if snps is not None else haplotype.snp_range
    snps = np.intersect1d(snps, np.where(d != INDETERMINATE)[0])
    d_snps = d[snps]
    filtered_diff = filter_diff(d_snps, error_filter, error_filter_length)    
    error_snps = snps[np.nonzero(d_snps - filtered_diff)[0]]
    
    # Detect edges as non-zero gradient points; output sufficiently long segments
    bp = haplotype.snp['base_pair']
    num_snps = haplotype.num_snps
    if np.size(filtered_diff) == 0:
        # No data to consider ==> no IBD intervals can be identified
        segments = []
    else:
        deriv = ndimage.convolve(filtered_diff, [1, -1])    
        edge = np.where(deriv != 0)[0]
        initial_phase = hap1_type if filtered_diff[0] == 0 else 1 - hap1_type
        if debug:
            print 'initial_phase', initial_phase  # , 'edge', edge
        # Convert recombination locations to segments of no recombination; filter short segments
        segments = [f for f in (Segment(((x[0], x[1])), set(((id1, x[2]), (id2, hap2_type))),
                                        (bp[x[0]], segment.stop_bp(bp, x[1], num_snps)),
                                        error_snps=segment.in_segment(error_snps, x))
                                for x in segment.edges_to_segments(snps, edge, initial_phase,
                                                                   haplotype.num_snps, hap1_type))
                    if segment_length(f) >= min_segment_length]
    
    # Cut segment margins
    if margin >= constants.SMALL_FLOAT:
        segments = [s for s in (s.middle_part(haplotype.nearest_snp, bp, margin) for s in segments) if s]
    
    # Restrict errors to those inside segments
    segment_set = SegmentSet(segments,
                             np.array(util.flattened_meshgrid(reduce(list.__add__, (s.error_snps.tolist() for s in segments)),
                                                                        np.array([id1, id2])), dtype=int) \
                             if segments else gt.empty_errors_array())
    if debug:
        print 'ibs_segments()', segment_set
        print 'errors', segment_set.errors
    return segment_set