def __export_spots_forecasts( spots_and_prediction, filename): #[Spot(name, lat, lon, prediction), ...] Verbose.print_arguments() content = """ { "type": "FeatureCollection", "features": [ """ sep = "" for ks, s in enumerate(spots_and_prediction): content += sep + """ { "type": "Feature", "geometry": { "type": "Point", "coordinates": [""" + str(s.lon) + "," + str(s.lat) + """] }, "properties": { "id": \"""" + str(s.id) + """\", "name": \"""" + Forecast.__fix_spots_name(s.name).replace( '"', '\\"') + """\", "nbFlights": """ + str(s.nbFlights) + """, "flyability": """ + str(s.prediction) + """ } } """ sep = "," content += "]}" with open(filename, "w") as fout: fout.write(content)
def __set_trained(self, dictContent): Verbose.print_arguments() modelContent = ModelContent() for kd,d in dictContent.items(): modelContent.add(kd, d) self.trainedModel.new(modelContent, self.wind_dim, self.other_dim, self.humidity_dim, self.nb_altitudes, self.model_type)
def save_all_weights(self): Verbose.print_arguments() if self.modelClass == ModelCells: os.makedirs(self.dirLayerWeights(), exist_ok=True) # shared for layer in [ "flyability_block", "crossability_block", "wind_block_cells", "wind_flyability_block", "humidity_flyability_block" ]: arrs = self.model.get_layer(layer).get_weights() for kArr, arr in enumerate(arrs): np.save(self.filesLayerWeights(layer + "_%d" % kArr), arr) # population populationWeights = self.model.get_layer( "population_block").get_weights() np.save(self.filesLayerWeights("population_date"), populationWeights[0]) # date factor if ModelSettings.optimize_dow: assert (len(populationWeights) == 3) np.save(self.filesLayerWeights("population_dow"), populationWeights[1]) # DOW factor else: assert (len(populationWeights) == 2) # specific for c, cell in enumerate(self.modelContent.cells()): for sr in range(self.modelContent.super_resolution * self.modelContent.super_resolution): c_sr = c * self.modelContent.super_resolution * self.modelContent.super_resolution + sr cell_sr = cell * self.modelContent.super_resolution * self.modelContent.super_resolution + sr np.save( self.filesLayerWeights("population_alt_cell_%d" % cell_sr), populationWeights[-1] [c_sr, :]) # population at each altitude else: for c, cell in enumerate(self.modelContent.cells()): if self.modelContent.nbSpots(cell) > 0: np.save( self.filesLayerWeights("population_0_spots__cell_%d" % cell), self.model.get_layer("population__cell_%d" % cell).get_weights()[0]) windWeights = self.model.get_layer( "wind_block_spots__cell_%d" % cell).get_weights() np.save( self.filesLayerWeights("wind_block_spots_0__cell_%d" % cell), windWeights[0]) np.save( self.filesLayerWeights("wind_block_spots_1__cell_%d" % cell), windWeights[1])
def compute_cells_forecasts(models_directory, problem_formulation, meteo_matrix): Verbose.print_arguments() predict = Predict(models_directory, ModelType.CELLS, problem_formulation) predict.set_meteo_data(meteo_matrix, GfsData().parameters_vector_all) predict.set_trained_cells() predict.trainedModel.load_all_weights() predict.set_prediction_population() NN_X = predict.get_X(range(meteo_matrix.shape[0])) return predict.trainedModel.model.predict(NN_X)
def compile(self, metrics=[]): Verbose.print_arguments() if self.problem_formulation == ProblemFormulation.CLASSIFICATION: self.model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.01), loss='binary_crossentropy', metrics=["accuracy"]) else: # REGRESSION self.model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.01), loss='mean_absolute_error', metrics=[])
def set_population_value(self, popuValue): Verbose.print_arguments() for layer in self.model.layers: if layer.name.startswith("population"): Verbose.print_text( 1, "[INFO] Setting population value %f in layer '%s'" % (popuValue, layer.name)) populationWeights = layer.get_weights() populationWeights[-1][:, :] = popuValue layer.set_weights(populationWeights)
def __load_or_compute_data(self): Verbose.print_arguments() if self.data_not_loaded(): try: self.__load() except: pass if self.data_not_loaded(): Verbose.print_text( 0, "[WARNING] data_not_loaded, __computeSpotsInformation") self.__compute_spots_information() self.__save()
def __download(url, path): Verbose.print_arguments() r = requests.get(url, stream=True) downloaded_size = 0 tmpPath = path + ".downloading" with open(tmpPath, 'wb') as f: for chunk in r.iter_content(chunk_size=None): if chunk: if downloaded_size // (1024 * 1024) != (downloaded_size + len(chunk)) // (1024 * 1024): Verbose.print_text(1, str(round(downloaded_size/(1024.0 * 1024.0),1)) +"Mo", True) downloaded_size += len(chunk) f.write(chunk) os.rename(tmpPath, path) Verbose.print_text(1, "")
def set_trained(self, cells, super_resolution=1, load_weights=True): Verbose.print_arguments() model_content = ModelContent() if self.model_type == ModelType.CELLS: model_content.set_super_resolution(super_resolution) for c in cells: if self.model_type == ModelType.SPOTS: # All the spots of the cells model_content.add(c, [s for s in range(len(self.Y_spots[c]))]) else: # All the cell model_content.add(c, -1) # Maybe the cell has no spots, which will crash at network creation if self.model_type == ModelType.SPOTS and model_content.total_nb_spots( ) == 0: return False #=================================================================== # Create model and load weights #=================================================================== tf.keras.backend.clear_session( ) # https://github.com/keras-team/keras/issues/3579 self.trained_model.new(model_content, wind_dim=self.wind_dim, other_dim=self.X_other[0].shape[-1], humidity_dim=self.X_humidity[0].shape[-1], nb_altitudes=self.X_wind[0].shape[-1] // self.wind_dim, model_type=self.model_type) # Re-load shared and specific weights if exists if load_weights: self.trained_model.load_all_weights() #=================================================================== # Model intputs/outputs #=================================================================== self.all_X = self.__get_X(model_content) self.all_Y = self.__get_Y(model_content) return True
def __get_Y(self, model_content): Verbose.print_arguments() if self.model_type == ModelType.CELLS: Y = self.flights_data.get_flights_by_altitude_matrix( self.all_cells, self.nb_altitudes, model_content.super_resolution, self.problem_formulation == ProblemFormulation.REGRESSION) nb_models = 4 all_Y = [ [] for model in range(nb_models) ] # flyability, crossability, wind-flyability, rain-flyability for cell in [ c * model_content.super_resolution * model_content.super_resolution + sc for c in model_content.cells() for sc in range(model_content.super_resolution * model_content.super_resolution) ]: for model in range(nb_models): all_Y[model] += [ Y[model][[ cell * self.nb_days + d for d in range(self.nb_days) ], :] ] return [np.stack(all_Y[model], 1) for model in range(nb_models)] else: # spots all_Y = [] # 1 per cell for c in model_content.cells(): if len(self.Y_spots[c]) > 0: all_Y += [ np.stack([ self.Y_spots[c][s] for s in model_content.spots(c) ], 1) ] # Y_spots: [cell][spot] -> array of shape (nb_days,) # all_Y[cell] = np array of shape (nb_days, nbSpots) return all_Y
def set_meteo_data(self, meteo_matrix, parameters_vector_all): Verbose.print_arguments() # Parameters prefixed by hour parameters_vector_all_with_hours = [(h, ) + p for h in [6, 12, 18] for p in parameters_vector_all] meteoParamsOther, meteoParamsWind, meteoParamsPrecipitation = TrainedModel.meteoParams( ) # Params for other and wind rainIdx = [[ parameters_vector_all_with_hours.index(pX) for pX in meteoParamsPrecipitation[h] ] for h in range(3)] otherIdx = [[ parameters_vector_all_with_hours.index(pX) for pX in meteoParamsOther[h] ] for h in range(3)] windIdx = [[ parameters_vector_all_with_hours.index(pX) for pX in meteoParamsWind[h] ] for h in range(3)] self.X_rain = [meteo_matrix[:, rainIdx[h]] for h in range(3)] self.X_other = [meteo_matrix[:, otherIdx[h]] for h in range(3)] self.X_wind = [ Utils.convert_wind_matrix(meteo_matrix[:, windIdx[h]], self.wind_dim) for h in range(3) ] # Load and apply normalization normalization_mean_other, normalization_std_other, normalization_mean_rain, normalization_std_rain = BinObj.load( "normalization_%s" % str(self.model_type).split(".")[-1], self.models_directory) for h in range(3): Utils.apply_normalization(self.X_other[h], normalization_mean_other, normalization_std_other) Utils.apply_normalization(self.X_rain[h], normalization_mean_rain, normalization_std_rain)
def new(self, model_content, wind_dim, other_dim, humidity_dim, nb_altitudes, model_type): Verbose.print_arguments() if model_type == ModelType.CELLS: self.modelClass = ModelCells initialization = None else: self.modelClass = ModelSpots initialization = {} initialization['date_factor'] = np.load( self.filesLayerWeights("population_date") + ".npy") if ModelSettings.optimize_dow: initialization['dow_factor'] = np.load( self.filesLayerWeights("population_dow") + ".npy") self.model = self.modelClass.createNewModel(self.problem_formulation, model_content, wind_dim, other_dim, humidity_dim, nb_altitudes, initialization) self.modelContent = model_content self.nbWindAltitudes = nb_altitudes
def set_trained_cells(self): Verbose.print_arguments() self.__set_trained({0: [-1]})
def __compute_spots_forecasts(self, models_directory, problem_formulation, lats, lons, meteo_matrix, filename): Verbose.print_arguments() predict = Predict(models_directory, ModelType.SPOTS, problem_formulation) predict.set_meteo_data(meteo_matrix, GfsData().parameters_vector_all) #============================================================= # depend de GribReader.get_values_array(self, params, crops): forecastCellsLine = {} line = 0 for crop in self.crops: for iLat in range(crop[0], crop[1]): for iLon in range(crop[2], crop[3]): forecastCellsLine[(iLat, iLon)] = line line += 1 #============================================================= # Compute or load cells_and_spots #============================================================= filename_cells_and_spots = "Forecast_cellsAndSpots_" + "_".join( [str(crop[d]) for crop in self.crops for d in range(4)]) if not BinObj.exists(filename_cells_and_spots): Verbose.print_text( 0, "Generating precomputation file because of new crop, it may crash on the server... To be computed on my computer" ) cells_and_spots = {} # find forecast cell for each spot # C'est comme le cellsAndSpots de Train sauf que les cellules sont les cells de forecast (32942 cells) spots_data = SpotsData() spots = spots_data.getSpots(range(80)) for kc, cell_spots in enumerate(spots): for ks, spot in enumerate(cell_spots): iCell = (np.abs(lats - spot.lat).argmin(), np.abs(lons - spot.lon).argmin()) cellLine = forecastCellsLine[iCell] kcks_spot = ( (kc, ks), spot.toDict()) # (training cell, ks) if not cellLine in cells_and_spots: cells_and_spots[cellLine] = [kcks_spot] else: cells_and_spots[cellLine] += [kcks_spot] BinObj.save(cells_and_spots, filename_cells_and_spots) else: cells_and_spots = BinObj.load(filename_cells_and_spots) #============================================================= # Create a model with 1 cell of 1 spot #============================================================= predict.set_trained_spots() #============================================================= # Compute prediction for each spot, one by one #============================================================= spots_and_prediction = [] for kcslst, cslst in enumerate(cells_and_spots.items()): meteoLine, spotsLst = cslst for cs in spotsLst: modelContent = ModelContent() modelContent.add(cs[0][0], cs[0][1]) predict.trainedModel.load_all_weights( modelContent) # TODO do not reload shared weights predict.set_prediction_population() NN_X = predict.get_X([meteoLine]) prediction = predict.trainedModel.model.predict(NN_X)[0][0] spots_and_prediction += [ Spot((cs[1]['name'], cs[1]['lat'], cs[1]['lon']), cs[1]['id'], cs[1]['nbFlights'], prediction) ] #[cs[1]] #============================================================= # Export all results #============================================================= Forecast.__export_spots_forecasts(spots_and_prediction, filename)
def createNewModel(cls, problem_formulation, model_content, wind_dim, other_dim, humidity_dim, nb_altitudes, initialization): Verbose.print_arguments() # Check initialization assert(not initialization is None) for k in initialization: assert(k in ["date_factor", "dow_factor"]) Verbose.print_text(1, "initialization "+ str(initialization)) # ============================================================================================================== # Shared variables # ============================================================================================================== # Not trainable var_date_factor = tf.keras.backend.constant(value=initialization['date_factor'], name="var_date_factor") if ModelSettings.optimize_dow: var_dow_factor = tf.keras.backend.constant(value=initialization['dow_factor'], name="var_dow_factor") else: var_dow_factor = tf.keras.backend.constant(value=ModelSettings.dow_init, name="var_dow_factor") # ============================================================================================================== # Inputs # ============================================================================================================== input_date = tf.keras.layers.Input(shape=(1,), name="in_date") input_dow = tf.keras.layers.Input(shape=(7,), name="in_dow") input_mountainess = tf.keras.layers.Input(shape=(model_content.nbCells(), nb_altitudes), name="in_mountainess") input_other = tf.keras.layers.Input(shape=(model_content.nbCells(), 3, other_dim), name="in_other") input_humidity = tf.keras.layers.Input(shape=(model_content.nbCells(), 3, humidity_dim), name="in_rain") input_wind = tf.keras.layers.Input(shape=(model_content.nbCells(), nb_altitudes, 3, wind_dim), name="in_wind") all_inputs = [input_date, input_dow, input_mountainess, input_other, input_humidity, input_wind] # ============================================================================================================== # Blocks # ============================================================================================================== flyabilityModel = get_flyability_block(other_dim, humidity_dim, name="flyability_block") flyabilityModel.trainable = False # freeze the block # ============================================================================================================== # Iterations over cells # ============================================================================================================== all_outputs = [] # 1 by cell for kc,c in enumerate(model_content.cells()): nb_spots = len(model_content.spots(c)) if nb_spots > 0: # inputs for this cell input_wind_this_cell = tf.keras.layers.Lambda(lambda x: x[:,kc,...])(input_wind) input_other_this_cell = tf.keras.layers.Lambda(lambda x: x[:,kc,...])(input_other) input_humidity_this_cell = tf.keras.layers.Lambda(lambda x: x[:,kc,...])(input_humidity) # blocks population_block = get_population_block(problem_formulation, var_date_factor, var_dow_factor, 1, name="population__cell_%d"%c) wind_block = get_wind_block_spots(nb_spots, name="wind_block_spots__cell_%d"%c) # Flyability wind_prediction = wind_block(input_wind_this_cell) wind_prediction = tf.keras.layers.Lambda(lambda x: tf.keras.backend.reshape(x, (-1, 1, nb_spots, 3)))(wind_prediction) flyability_prediction = encapsulate_flyability(flyabilityModel, 1, nb_spots, other_dim, humidity_dim, [wind_prediction, input_other_this_cell, input_humidity_this_cell]) # Apply population flown_prediction = population_block([flyability_prediction, input_date, input_dow]) flown_prediction = tf.keras.layers.Lambda(lambda x: tf.keras.backend.reshape(x, (-1, nb_spots)))(flown_prediction) all_outputs += [flown_prediction] #========================================================================================= # Make model #========================================================================================= return tf.keras.models.Model(all_inputs, all_outputs)
def createNewModel(cls, problem_formulation, model_content, wind_dim, other_dim, humidity_dim, nb_altitudes, initialization): Verbose.print_arguments() # ============================================================================================================== # Shared variables # ============================================================================================================== var_date_factor = tf.keras.backend.variable(np.array([[1.275]], dtype=np.float), name="var_date_factor") if ModelSettings.optimize_dow: var_dow_factor = tf.keras.backend.variable(np.array(ModelSettings.dow_init, dtype=np.float), name="var_dow_factor") else: var_dow_factor = tf.keras.backend.constant(np.array(ModelSettings.dow_init, dtype=np.float), name="var_dow_factor") # ============================================================================================================== # Inputs # ============================================================================================================== input_date = tf.keras.layers.Input(shape=(1,), name="in_date") input_dow = tf.keras.layers.Input(shape=(7,), name="in_dow") input_mountainess = tf.keras.layers.Input(shape=(model_content.nbCells(), nb_altitudes), name="in_mountainess") input_other = tf.keras.layers.Input(shape=(model_content.nbCells(), 3, other_dim), name="in_other") input_humidity = tf.keras.layers.Input(shape=(model_content.nbCells(), 3, humidity_dim), name="in_rain") input_wind = tf.keras.layers.Input(shape=(model_content.nbCells(), nb_altitudes, 3, wind_dim), name="in_wind") allInputs = [input_date, input_dow, input_mountainess, input_other, input_humidity, input_wind] # ============================================================================================================== # Blocks # ============================================================================================================== wind_block = get_wind_block_cells(name="wind_block_cells") flyability_block = get_flyability_block(other_dim, humidity_dim, name="flyability_block") population_block = get_population_block(problem_formulation, var_date_factor, var_dow_factor, model_content.super_resolution, name="population_block") crossability_block = get_crossability_block(other_dim, humidity_dim, nb_altitudes, wind_dim, model_content, name="crossability_block") wind_flyability_block = get_wind_flyability_block(nb_altitudes, model_content, name="wind_flyability_block") humidity_flyability_block = get_humidity_flyability_block(nb_altitudes, model_content, humidity_dim, name="humidity_flyability_block") # ============================================================================================================== # Flyability/crossability # ============================================================================================================== wind_prediction = wind_block([input_mountainess, input_wind]) flyability_prediction = encapsulate_flyability(flyability_block, model_content.nbCells(), nb_altitudes, other_dim, humidity_dim, [wind_prediction, input_other, input_humidity]) crossability_prediction = crossability_block([flyability_prediction, wind_prediction, input_other, input_humidity]) wind_flyability_prediction = wind_flyability_block(wind_prediction) humidity_flyability_prediction = humidity_flyability_block(input_humidity) #========================================================================================= # Apply population #========================================================================================= flown_prediction = population_block([flyability_prediction, input_date, input_dow]) crossed_prediction = population_block([crossability_prediction, input_date, input_dow]) wind_flown_prediction = population_block([wind_flyability_prediction, input_date, input_dow]) humidity_flown_prediction = population_block([humidity_flyability_prediction, input_date, input_dow]) #========================================================================================= # Make model #========================================================================================= return tf.keras.models.Model(allInputs, [flown_prediction, crossed_prediction, wind_flown_prediction, humidity_flown_prediction])
def load_all_weights(self, modelContentToLoad=None, wind_bias=-1.0): Verbose.print_arguments() # self.modelContent est le contenu du network, il définit le nom des layers # modelContentToLoad définit le nom des fichiers de weights à utiliser if modelContentToLoad is None: modelContentToLoad = self.modelContent else: assert (self.modelContent.sameStructure(modelContentToLoad)) if self.modelClass == ModelCells: layers = [ "flyability_block", "crossability_block", "wind_block_cells", "wind_flyability_block", "humidity_flyability_block" ] else: layers = ["flyability_block"] #=============================================================================================================== # shared #=============================================================================================================== # Flyability, Fufu, Wind, WindFlyability, RainFlyability for layer in layers: try: arrs = self.model.get_layer(layer).get_weights() for kArr, arr in enumerate(arrs): arr = np.load( self.filesLayerWeights(layer + "_%d" % kArr) + ".npy") if wind_bias > 0.0 and layer == "wind_block_cells": arr = wind_bias * arr arrs[kArr] = arr self.model.get_layer(layer).set_weights(arrs) except: pass if self.modelClass == ModelCells: populationWeights = self.model.get_layer( "population_block").get_weights() #[(1,), (7,), (5,)] try: populationWeights[0] = np.load( self.filesLayerWeights("population_date") + ".npy") # date factor (1,) if ModelSettings.optimize_dow: assert (len(populationWeights) == 3) populationWeights[1] = np.load( self.filesLayerWeights("population_dow") + ".npy") # DOW factor (7,) else: assert (len(populationWeights) == 2) except: Verbose.print_text( 1, "[ERROR] Could not load weights population_date population_dow" ) raise # =============================================================================================================== # specific # =============================================================================================================== if self.modelClass == ModelCells: for c, cell in enumerate( self.modelContent.cells()): # TODO super_resolution for sr in range(self.modelContent.super_resolution * self.modelContent.super_resolution): c_sr = c * self.modelContent.super_resolution * self.modelContent.super_resolution + sr cell_sr = cell * self.modelContent.super_resolution * self.modelContent.super_resolution + sr try: populationWeights[-1][c_sr, :] = np.load( self.filesLayerWeights( "population_alt_cell_%d" % cell_sr) + ".npy") # population at each altitude except: Verbose.print_text( 1, "[ERROR] Could not load weights for population cell %d" % cell_sr) raise self.model.get_layer("population_block").set_weights( populationWeights) else: Verbose.print_text(1, "modelContent :" + str(self.modelContent)) Verbose.print_text(1, "modelContentToLoad:" + str(modelContentToLoad)) for c, cell in enumerate(self.modelContent.cells()): cellToLoad = modelContentToLoad.cells()[c] spotsToLoad = modelContentToLoad.spots(cellToLoad) try: self.model.get_layer( "population__cell_%d" % cell).set_weights([ np.load( self.filesLayerWeights( "population_0_spots__cell_%d" % cellToLoad) + ".npy") ]) except: Verbose.print_text( 1, "[WARNING] Could not load weights for " + ("population__cell_%d" % cell)) try: # load weights for all spots WindSpots_cell_0 = np.load( self.filesLayerWeights( "wind_block_spots_0__cell_%d" % cellToLoad) + ".npy") # shape (nbSpots, nbWindDim) WindSpots_cell_1 = np.load( self.filesLayerWeights( "wind_block_spots_1__cell_%d" % cellToLoad) + ".npy") # shape ( 1, nbWindDim) # keep only spots of modelContent WindSpots_cell_0 = WindSpots_cell_0[spotsToLoad, :] WindSpots_cell_1 = WindSpots_cell_1[spotsToLoad, :] self.model.get_layer( "wind_block_spots__cell_%d" % cell).set_weights( [WindSpots_cell_0, WindSpots_cell_1]) except: Verbose.print_text( 1, "[WARNING] Could not load weights for " + ("wind_block_spots__cell_%d" % cell))
def __get_X(self, model_content): # The same for the 2 models Verbose.print_arguments() all_X = [] # 0) date (nb_days,) all_X += [self.X_date] # 1) DOW hot vectors (nb_days, 7) all_X += [self.X_dow] # 2) mountainess (nb_days, nb_cells, nb_altitudes) all_X += [ np.repeat( np.array([ self.flights_data.cellKAltitudeMountainess[c][alt] for c in model_content.cells() for alt in range(self.nb_altitudes) ], dtype=np.float).reshape(1, model_content.nbCells(), self.nb_altitudes), self.nb_days, 0) ] # 3) other (nb_days, nb_cells, nbHours, dimOther) all_X += [ np.stack([ np.stack([ self.X_other[h] [[c * self.nb_days + d for d in range(self.nb_days)], :] for c in model_content.cells() ], 1) for h in range(3) ], 2) ] # 4) rain (nb_days, nb_cells, nbHours, dimRain) all_X += [ np.stack([ np.stack([ self.X_humidity[h] [[c * self.nb_days + d for d in range(self.nb_days)], :] for c in model_content.cells() ], 1) for h in range(3) ], 2) ] # 5) wind (nb_days, nb_cells, nb_altitudes, nbHours, dimWind) all_X += [ np.stack([ np.stack([ np.stack([ self.X_wind[h] [[c * self.nb_days + d for d in range(self.nb_days)], alt * self.wind_dim:(alt + 1) * self.wind_dim] for c in model_content.cells() ], 1) for alt in range(self.nb_altitudes) ], 2) for h in range(3) ], 3) ] # debug, print shapes if False: for ix in range(len(all_X)): print(str(ix).rjust(3), all_X[ix].shape) return all_X
def train(self, lr_schedule, use_validation_set=False, train_crossability_only=False): Verbose.print_arguments() self.trained_model.compile([]) # re-compile for removing metrics #self.trained_model.model.summary() if self.model_type == ModelType.CELLS: if train_crossability_only: train.trained_model.freeze_all_but_crossability() else: train.trained_model.unfreeze_all() #=================================================================== # Training/validation set split #=================================================================== if use_validation_set: if False: # random validation set validation_split = 0.2 permutation = np.random.permutation(self.nb_days) days_to_use_validation = permutation[ 0:int(round(self.nb_days * validation_split))] else: # non-random and well distributed validation set days_to_use_validation = np.array(range(0, self.nb_days, 2)) else: if True: # during process tuning, still check the second optim with validation data days_to_use_validation = np.array(range(0, self.nb_days, 6)) else: days_to_use_validation = np.array([]) days_to_use_training = np.array([ s for s in range(self.nb_days) if s not in days_to_use_validation ]) #=================================================================== # Run training #=================================================================== history = self.trained_model.model.fit( x=[x[days_to_use_training, ...] for x in self.all_X], y=[y[days_to_use_training, ...] for y in self.all_Y], validation_data=( [x[days_to_use_validation, ...] for x in self.all_X], [y[days_to_use_validation, ...] for y in self.all_Y]) if days_to_use_validation.size > 0 else None, epochs=lr_schedule[2], batch_size=32, shuffle=True, verbose=0, callbacks=[ self.schedule_with_params(lr_init=lr_schedule[0], lr_end=lr_schedule[1], nb_epochs=lr_schedule[2]), MyTrainingLogger( self.model_type, self.models_directory + "/" + str(self.model_type).split(".")[-1] + ".log") ]) if 'val_loss' in history.history: return np.mean(history.history['val_loss'][-5:]) else: return None
def save(self): Verbose.print_arguments() self.trained_model.save_all_weights()
def set_prediction_population(self): Verbose.print_arguments() prediction_popu = self.__get_prediction_population() self.trainedModel.set_population_value(prediction_popu)
def compute_prediction_file_cells( cells_forecasts, prediction_filename_for_tiler, distinct_latitudes, distinct_longitudes, meteo_matrix, crops, meteo_params, grid_desc_predictions, export_for_tiler=True): Verbose.print_arguments() # ====================================================================================== # Retrieve geopotential height at 12h indices in meteoParams # # inputs: # - meteoParams # - parameters_geopotential_height # outputs: # - geopotential_height_indices # ====================================================================================== geopotential_height_indices = [] for geopotential_height_param in GfsData().parameters_geopotential_height: for kParam, param in enumerate(meteo_params): if param == (12,) + geopotential_height_param: geopotential_height_indices += [kParam] break assert (len(geopotential_height_indices) == len(GfsData().parameters_geopotential_height)) # ====================================================================================== # Retrieve wind at 12h # # inputs: # - meteoParams # - parameters_wind # outputs: # - wind_indices # ====================================================================================== wind_indices = [] for wind_param in GfsData().parameters_wind: for kParam, param in enumerate(meteo_params): if param == (12,) + wind_param: wind_indices += [kParam] break assert (len(wind_indices) == len(GfsData().parameters_wind)) # ======================================================================== # Create and fill prediction grid # # params: # - grid_desc_predictions # inputs: # - distinct_latitudes # - distinct_longitudes # - meteo_matrix # - geopotential_height_indices # - predictions # outputs: # - prediction_grid # ======================================================================== prediction_grid = GridLatLon(grid_desc_predictions[0], grid_desc_predictions[1], grid_desc_predictions[2], grid_desc_predictions[3]) p = 0 for crop in crops: # number of data rectangles to read in the GRIB grid lat_range = (crop[0], crop[1]) lon_range = (crop[2], crop[3]) Verbose.print_text(1, "lats: " + str(distinct_latitudes[lat_range[0]]) +" , "+ str(distinct_latitudes[lat_range[1]-1])) Verbose.print_text(1, "lons: " + str(distinct_longitudes[lon_range[0]]) +" , "+ str(distinct_longitudes[lon_range[1]-1])) for ilat in range(lat_range[0], lat_range[1]): for ilon in range(lon_range[0], lon_range[1]): predictions_data_sample = () # Add geopential heights (not predicted, simply meteo variables) predictions_data_sample += (meteo_matrix[p, geopotential_height_indices[0]], # 0 meteo_matrix[p, geopotential_height_indices[1]], # 1 meteo_matrix[p, geopotential_height_indices[2]], # 2 meteo_matrix[p, geopotential_height_indices[3]], # 3 meteo_matrix[p, geopotential_height_indices[4]]) # 4 predictions_data_sample += (cells_forecasts[0][p,0,0], # flyability at 1000 # 5 cells_forecasts[0][p,0,1], # flyability at 900 # 6 cells_forecasts[0][p,0,2], # flyability at 800 # 7 cells_forecasts[0][p,0,3], # flyability at 700 # 8 cells_forecasts[0][p,0,4], # flyability at 600 # 9 np.mean(cells_forecasts[1][p,0,0:5]),# crossability # 10 cells_forecasts[2][p,0,0], # wind at 1000 # 11 cells_forecasts[2][p,0,1], # wind at 900 # 12 cells_forecasts[2][p,0,2], # wind at 800 # 13 cells_forecasts[2][p,0,3], # wind at 700 # 14 cells_forecasts[2][p,0,4], # wind at 600 # 15 np.mean(cells_forecasts[3][p,0,0:5]), # humidity # 16 0.0) # Attractiveness # 17 predictions_data_sample += (meteo_matrix[p, wind_indices[0 + 0]], # U 1000 12h # 18 meteo_matrix[p, wind_indices[2 + 0]], # U 900 12h # 19 meteo_matrix[p, wind_indices[4 + 0]], # U 800 12h # 20 meteo_matrix[p, wind_indices[6 + 0]], # U 700 12h # 21 meteo_matrix[p, wind_indices[8 + 0]], # U 600 12h # 22 meteo_matrix[p, wind_indices[0 + 1]], # V 1000 12h # 23 meteo_matrix[p, wind_indices[2 + 1]], # V 900 12h # 24 meteo_matrix[p, wind_indices[4 + 1]], # V 800 12h # 25 meteo_matrix[p, wind_indices[6 + 1]], # V 700 12h # 26 meteo_matrix[p, wind_indices[8 + 1]]) # V 600 12h # 27 # Push the sample prediction_grid.add(distinct_latitudes[ilat], distinct_longitudes[ilon], predictions_data_sample) p += 1 # ======================================================================== # Export predictions for tiler # # params: # - predictionFilenameForTiler # inputs: # - prediction_grid # ======================================================================== accessors = [lambda x, ix=ixVal: sum([xx[ix] for xx in x]) / len(x) for ixVal in range(len(predictions_data_sample))] if export_for_tiler: prediction_grid.export_data_for_tiler(prediction_filename_for_tiler, accessors) else: prediction_grid.export_json(prediction_filename_for_tiler, accessors)
def set_trained_spots(self): Verbose.print_arguments() self.__set_trained({0: [0]})