def evaluation(trainer):
        model = load_inception_model()

        ims = []
        xp = gen.xp

        n_ims = 50000
        for i in range(0, n_ims, batchsize):
            z = Variable(xp.asarray(gen.make_hidden(batchsize)))
            with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
                x = gen(z)
            x = chainer.cuda.to_cpu(x.data)
            x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0), dtype=np.uint8)
            ims.append(x)
        ims = np.asarray(ims)
        _, _, _, h, w = ims.shape
        ims = ims.reshape((n_ims, 3, h, w)).astype("f")

        mean, std = inception_score(model, ims)

        chainer.reporter.report({
            'inception_mean': mean,
            'inception_std': std
        })
        isarray.append([mean,std])
        _IS_array = np.array(isarray)
        _IS_array = _IS_array[:,0]
        plt.plot(range(len(_IS_array)), _IS_array, 'r-', label = 'Inception Score')
        plt.legend()
        plt.savefig(dir+'/inception_score.pdf', bbox_inches='tight',format="pdf", dpi = 300)
        plt.close()
        np.save(dir+"/inception_score.npy",{"IS_array":isarray})
Esempio n. 2
0
def sample_image(model, encoder, output_image_dir, n_row, batches_done,
                 dataloader, device):
    """Saves a grid of generated imagenet pictures with captions"""
    target_dir = os.path.join(output_image_dir, "samples/")
    if not os.path.isdir(target_dir):
        os.makedirs(target_dir)

    captions = []
    gen_imgs = []
    # get sample captions
    done = False
    while not done:
        for (_, labels_batch, captions_batch) in dataloader:
            captions += captions_batch
            conditional_embeddings = encoder(labels_batch.to(device), captions)
            imgs = model.sample(conditional_embeddings).cpu()
            gen_imgs.append(imgs)

            if len(captions) > n_row**2:
                done = True
                break

            break

    gen_imgs = torch.cat(gen_imgs).numpy()
    gen_imgs = np.clip(gen_imgs + 1e-5, 0, 1)

    score = inception_score(gen_imgs, splits=1)

    print("Inception score:", score)

    for (imgs, labels, captions) in dataloader:
        fid = calculate_fid(imgs,
                            gen_imgs,
                            batch_size=len(gen_imgs),
                            use_multiprocessing=False)
        break

    print("FID score:", fid)

    fig = plt.figure(figsize=((8, 8)))
    grid = ImageGrid(fig, 111, nrows_ncols=(n_row, n_row), axes_pad=0.2)

    for i in range(n_row**2):
        grid[i].imshow(gen_imgs[i].transpose([1, 2, 0]))
        grid[i].set_title(captions[i])
        grid[i].tick_params(axis='both',
                            which='both',
                            bottom=False,
                            top=False,
                            labelbottom=True)

    save_file = os.path.join(target_dir, "{:013d}.png".format(batches_done))
    plt.savefig(save_file)
    print("saved  {}".format(save_file))
    plt.close()
Esempio n. 3
0
def compute_is():
    fake_imgs_path = os.path.join(output_dir, name, 'images',
                                  'epoch_{}'.format(epoch))

    mean, std = inception_score(fake_imgs_path)
    results[name][epoch]['IS'] = {
        'mean': '{:.5f}'.format(mean),
        'std': '{:.5f}'.format(std)
    }
    print('IS: ', mean, std)
Esempio n. 4
0
def my_inception(gen, batchsize=100):
    model = load_inception_model()

    ims = []
    n_ims = 100
    for i in range(0, n_ims, batchsize):
        z = Variable(np.asarray(gen.make_hidden(batchsize)))
#        with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
#            x = gen(z)
        x = gen(z).data
#        x = chainer.cuda.to_cpu(x.data)
        x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0), dtype=np.uint8)
        ims.append(x)
    ims = np.asarray(ims)
    _, _, _, h, w = ims.shape
    ims = ims.reshape((n_ims, 3, h, w)).astype("f")

    mean, std = inception_score(model, ims) #FIXME ここで落ちる

    return mean, std
Esempio n. 5
0
    def evaluation(trainer):
        model = load_inception_model()

        ims = []
        xp = gen.xp

        n_ims = 50000
        for i in range(0, n_ims, batchsize):
            z = Variable(xp.asarray(gen.make_hidden(batchsize)))
            with chainer.using_config('train', False), chainer.using_config(
                    'enable_backprop', False):
                x = gen(z)
            x = chainer.cuda.to_cpu(x.data)
            x = np.asarray(np.clip(x * 127.5 + 127.5, 0.0, 255.0),
                           dtype=np.uint8)
            ims.append(x)
        ims = np.asarray(ims)
        _, _, _, h, w = ims.shape
        ims = ims.reshape((n_ims, 3, h, w)).astype("f")

        mean, std = inception_score(model, ims)  #FIXME ここで落ちる

        chainer.reporter.report({'inception_mean': mean, 'inception_std': std})