Esempio n. 1
0
 def build_network():
     if FLAGS.precision == 'bfloat16':
         with tf.contrib.tpu.bfloat16_scope():
             logits, end_points = inception.inception_v4(
                 features, num_classes, is_training=is_training)
         logits = tf.cast(logits, tf.float32)
     elif FLAGS.precision == 'float32':
         logits, end_points = inception.inception_v4(
             features, num_classes, is_training=is_training)
     return logits, end_points
Esempio n. 2
0
def inception_model_fn(features, labels, mode, params):
  """Inception v4 model using Estimator API."""
  num_classes = FLAGS.num_classes
  is_training = (mode == tf.estimator.ModeKeys.TRAIN)
  is_eval = (mode == tf.estimator.ModeKeys.EVAL)
  features = tensor_transform_fn(features, params['model_transpose_dims'])

  if FLAGS.clear_update_collections:
    with arg_scope(inception.inception_v4_arg_scope(
        batch_norm_decay=BATCH_NORM_DECAY,
        batch_norm_epsilon=BATCH_NORM_EPSILON,
        updates_collections=None)):
      logits, end_points = inception.inception_v4(
          features,
          num_classes,
          is_training=is_training)
  else:
    with arg_scope(inception.inception_v4_arg_scope(
        batch_norm_decay=BATCH_NORM_DECAY,
        batch_norm_epsilon=BATCH_NORM_EPSILON)):
      logits, end_points = inception.inception_v4(
          features,
          num_classes,
          is_training=is_training)

  predictions = end_points
  predictions.update({
      'classes': tf.argmax(input=logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  })

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  if mode == tf.estimator.ModeKeys.EVAL and FLAGS.display_tensors and (
      not FLAGS.use_tpu):
    with tf.control_dependencies([
        tf.Print(
            predictions['classes'], [predictions['classes']],
            summarize=FLAGS.eval_batch_size,
            message='prediction: ')
    ]):
      labels = tf.Print(
          labels, [labels], summarize=FLAGS.eval_batch_size, message='label: ')

  one_hot_labels = tf.one_hot(labels, FLAGS.num_classes, dtype=tf.int32)

  if 'AuxLogits' in end_points:
    tf.losses.softmax_cross_entropy(
        onehot_labels=one_hot_labels,
        logits=end_points['AuxLogits'],
        weights=0.4,
        label_smoothing=0.1,
        scope='aux_loss')

  tf.losses.softmax_cross_entropy(
      onehot_labels=one_hot_labels,
      logits=logits,
      weights=1.0,
      label_smoothing=0.1)
  loss = tf.losses.get_total_loss(add_regularization_losses=True)

  initial_learning_rate = FLAGS.learning_rate * FLAGS.train_batch_size / 256
  # Adjust the initial learning rate for warmup
  initial_learning_rate /= (
      FLAGS.learning_rate_decay**((FLAGS.warmup_epochs + FLAGS.cold_epochs) /
                                  FLAGS.learning_rate_decay_epochs))
  final_learning_rate = 0.0001 * initial_learning_rate

  host_call = None
  train_op = None
  if is_training:
    batches_per_epoch = _NUM_TRAIN_IMAGES / FLAGS.train_batch_size
    global_step = tf.train.get_or_create_global_step()
    current_epoch = tf.cast(
        (tf.cast(global_step, tf.float32) / batches_per_epoch), tf.int32)

    clr = FLAGS.cold_learning_rate
    wlr = initial_learning_rate / (FLAGS.warmup_epochs + FLAGS.cold_epochs)
    learning_rate = tf.where(
        tf.greater_equal(current_epoch, FLAGS.cold_epochs), (tf.where(
            tf.greater_equal(current_epoch,
                             FLAGS.warmup_epochs + FLAGS.cold_epochs),
            tf.train.exponential_decay(
                learning_rate=initial_learning_rate,
                global_step=global_step,
                decay_steps=int(FLAGS.learning_rate_decay_epochs *
                                batches_per_epoch),
                decay_rate=FLAGS.learning_rate_decay,
                staircase=True), tf.multiply(
                    tf.cast(current_epoch, tf.float32), wlr))), clr)

    # Set a minimum boundary for the learning rate.
    learning_rate = tf.maximum(
        learning_rate, final_learning_rate, name='learning_rate')

    if FLAGS.optimizer == 'sgd':
      tf.logging.info('Using SGD optimizer')
      optimizer = tf.train.GradientDescentOptimizer(
          learning_rate=learning_rate)
    elif FLAGS.optimizer == 'momentum':
      tf.logging.info('Using Momentum optimizer')
      optimizer = tf.train.MomentumOptimizer(
          learning_rate=learning_rate, momentum=0.9)
    elif FLAGS.optimizer == 'RMS':
      tf.logging.info('Using RMS optimizer')
      optimizer = tf.train.RMSPropOptimizer(
          learning_rate,
          RMSPROP_DECAY,
          momentum=RMSPROP_MOMENTUM,
          epsilon=RMSPROP_EPSILON)
    else:
      tf.logging.fatal('Unknown optimizer:', FLAGS.optimizer)

    if FLAGS.use_tpu:
      optimizer = tpu_optimizer.CrossShardOptimizer(optimizer)

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step=global_step)
    if FLAGS.moving_average:
      ema = tf.train.ExponentialMovingAverage(
          decay=MOVING_AVERAGE_DECAY, num_updates=global_step)
      variables_to_average = (
          tf.trainable_variables() + tf.moving_average_variables())
      with tf.control_dependencies([train_op]), tf.name_scope('moving_average'):
        train_op = ema.apply(variables_to_average)

    # To log the loss, current learning rate, and epoch for Tensorboard, the
    # summary op needs to be run on the host CPU via host_call. host_call
    # expects [batch_size, ...] Tensors, thus reshape to introduce a batch
    # dimension. These Tensors are implicitly concatenated to
    # [params['batch_size']].
    gs_t = tf.reshape(global_step, [1])
    loss_t = tf.reshape(loss, [1])
    lr_t = tf.reshape(learning_rate, [1])
    ce_t = tf.reshape(current_epoch, [1])

    def host_call_fn(gs, loss, lr, ce):
      """Training host call. Creates scalar summaries for training metrics.

      This function is executed on the CPU and should not directly reference
      any Tensors in the rest of the `model_fn`. To pass Tensors from the model
      to the `metric_fn`, provide as part of the `host_call`. See
      https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
      for more information.

      Arguments should match the list of `Tensor` objects passed as the second
      element in the tuple passed to `host_call`.

      Args:
        gs: `Tensor with shape `[batch]` for the global_step
        loss: `Tensor` with shape `[batch]` for the training loss.
        lr: `Tensor` with shape `[batch]` for the learning_rate.
        ce: `Tensor` with shape `[batch]` for the current_epoch.

      Returns:
        List of summary ops to run on the CPU host.
      """
      gs = gs[0]
      with summary.create_file_writer(FLAGS.model_dir).as_default():
        with summary.always_record_summaries():
          summary.scalar('loss', tf.reduce_mean(loss), step=gs)
          summary.scalar('learning_rate', tf.reduce_mean(lr), step=gs)
          summary.scalar('current_epoch', tf.reduce_mean(ce), step=gs)

          return summary.all_summary_ops()

    host_call = (host_call_fn, [gs_t, loss_t, lr_t, ce_t])

  eval_metrics = None
  if is_eval:
    def metric_fn(labels, logits):
      """Evaluation metric function. Evaluates accuracy.

      This function is executed on the CPU and should not directly reference
      any Tensors in the rest of the `model_fn`. To pass Tensors from the model
      to the `metric_fn`, provide as part of the `eval_metrics`. See
      https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
      for more information.

      Arguments should match the list of `Tensor` objects passed as the second
      element in the tuple passed to `eval_metrics`.

      Args:
        labels: `Tensor` with shape `[batch, ]`.
        logits: `Tensor` with shape `[batch, num_classes]`.

      Returns:
        A dict of the metrics to return from evaluation.
      """
      predictions = tf.argmax(logits, axis=1)
      top_1_accuracy = tf.metrics.accuracy(labels, predictions)
      in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32)
      top_5_accuracy = tf.metrics.mean(in_top_5)

      return {
          'accuracy': top_1_accuracy,
          'accuracy@5': top_5_accuracy,
      }

    eval_metrics = (metric_fn, [labels, logits])

  return tpu_estimator.TPUEstimatorSpec(
      mode=mode,
      loss=loss,
      train_op=train_op,
      host_call=host_call,
      eval_metrics=eval_metrics)
Esempio n. 3
0
def inception_model_fn(features, labels, mode, params):
    """Inception v4 model using Estimator API."""
    num_classes = FLAGS.num_classes
    is_training = (mode == tf.estimator.ModeKeys.TRAIN)
    features = tensor_transform_fn(features, params['model_transpose_dims'])

    if FLAGS.clear_update_collections:
        with arg_scope(
                inception.inception_v4_arg_scope(
                    batch_norm_decay=BATCH_NORM_DECAY,
                    batch_norm_epsilon=BATCH_NORM_EPSILON,
                    updates_collections=None)):
            logits, end_points = inception.inception_v4(
                features, num_classes, is_training=is_training)
    else:
        with arg_scope(
                inception.inception_v4_arg_scope(
                    batch_norm_decay=BATCH_NORM_DECAY,
                    batch_norm_epsilon=BATCH_NORM_EPSILON)):
            logits, end_points = inception.inception_v4(
                features, num_classes, is_training=is_training)

        predictions = {
            'classes': tf.argmax(input=logits, axis=1),
            'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
        }

    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    if mode == tf.estimator.ModeKeys.EVAL and FLAGS.display_tensors and (
            not FLAGS.use_tpu):
        with tf.control_dependencies([
                tf.Print(predictions['classes'], [predictions['classes']],
                         summarize=FLAGS.eval_batch_size,
                         message='prediction: ')
        ]):
            labels = tf.Print(labels, [labels],
                              summarize=FLAGS.eval_batch_size,
                              message='label: ')

    one_hot_labels = tf.one_hot(labels, FLAGS.num_classes, dtype=tf.int32)
    if 'AuxLogits' in end_points:
        tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels,
                                        logits=end_points['AuxLogits'],
                                        weights=0.4,
                                        label_smoothing=0.1,
                                        scope='aux_loss')

    tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels,
                                    logits=logits,
                                    weights=1.0,
                                    label_smoothing=0.1)
    loss = tf.losses.get_total_loss(add_regularization_losses=True)

    initial_learning_rate = FLAGS.learning_rate * FLAGS.train_batch_size / 256
    # Adjust the initial learning rate for warmup
    initial_learning_rate /= (
        FLAGS.learning_rate_decay**((FLAGS.warmup_epochs + FLAGS.cold_epochs) /
                                    FLAGS.learning_rate_decay_epochs))
    final_learning_rate = 0.0001 * initial_learning_rate

    train_op = None
    if is_training:
        batches_per_epoch = _NUM_TRAIN_IMAGES // FLAGS.train_batch_size
        global_step = tf.train.get_or_create_global_step()
        cur_epoch = tf.cast(
            (tf.cast(global_step, tf.float32) / batches_per_epoch), tf.int32)

        clr = FLAGS.cold_learning_rate
        wlr = initial_learning_rate / (FLAGS.warmup_epochs + FLAGS.cold_epochs)
        learning_rate = tf.where(
            tf.greater_equal(cur_epoch, FLAGS.cold_epochs), (tf.where(
                tf.greater_equal(cur_epoch,
                                 FLAGS.warmup_epochs + FLAGS.cold_epochs),
                tf.train.exponential_decay(
                    learning_rate=initial_learning_rate,
                    global_step=global_step,
                    decay_steps=FLAGS.learning_rate_decay_epochs *
                    batches_per_epoch,
                    decay_rate=FLAGS.learning_rate_decay,
                    staircase=True),
                tf.multiply(tf.cast(cur_epoch, tf.float32), wlr))), clr)

        # Set a minimum boundary for the learning rate.
        learning_rate = tf.maximum(learning_rate,
                                   final_learning_rate,
                                   name='learning_rate')

        if FLAGS.optimizer == 'sgd':
            tf.logging.info('Using SGD optimizer')
            optimizer = tf.train.GradientDescentOptimizer(
                learning_rate=learning_rate)
        elif FLAGS.optimizer == 'momentum':
            tf.logging.info('Using Momentum optimizer')
            optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                                   momentum=0.9)
        elif FLAGS.optimizer == 'RMS':
            tf.logging.info('Using RMS optimizer')
            optimizer = tf.train.RMSPropOptimizer(learning_rate,
                                                  RMSPROP_DECAY,
                                                  momentum=RMSPROP_MOMENTUM,
                                                  epsilon=RMSPROP_EPSILON)
        else:
            tf.logging.fatal('Unknown optimizer:', FLAGS.optimizer)

        if FLAGS.use_tpu:
            optimizer = tpu_optimizer.CrossShardOptimizer(optimizer)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(loss, global_step=global_step)
        if FLAGS.moving_average:
            ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY,
                                                    num_updates=global_step)
            variables_to_average = (tf.trainable_variables() +
                                    tf.moving_average_variables())
            with tf.control_dependencies([train_op
                                          ]), tf.name_scope('moving_average'):
                train_op = ema.apply(variables_to_average)

    eval_metrics = None
    if mode == tf.estimator.ModeKeys.EVAL:

        def metric_fn(labels, predictions):
            accuracy = tf.metrics.accuracy(
                labels, tf.argmax(input=predictions, axis=1))
            return {'accuracy': accuracy}

        if FLAGS.use_logits:
            eval_predictions = logits
        else:
            eval_predictions = end_points['Predictions']

        eval_metrics = (metric_fn, [labels, eval_predictions])

    return tpu_estimator.TPUEstimatorSpec(mode=mode,
                                          loss=loss,
                                          train_op=train_op,
                                          eval_metrics=eval_metrics)