Esempio n. 1
0
def mapply(mpo, mps):
    """
    apply mpo to mps, or apply mpo to mpo
    """
    nsites = len(mpo)
    assert len(mps) == nsites

    ret = [None] * nsites

    if len(mps[0].shape) == 3:
        # mpo x mps
        for i in xrange(nsites):
            assert mpo[i].shape[2] == mps[i].shape[1]
            mt = N.einsum("apqb,cqd->acpbd", mpo[i], mps[i])
            mt = N.reshape(mt, [
                mpo[i].shape[0] * mps[i].shape[0], mpo[i].shape[1],
                mpo[i].shape[-1] * mps[i].shape[-1]
            ])
            ret[i] = mt
    elif len(mps[0].shape) == 4:
        # mpo x mpo
        for i in xrange(nsites):
            assert mpo[i].shape[2] == mps[i].shape[1]
            mt = N.einsum("apqb,cqrd->acprbd", mpo[i], mps[i])
            mt = N.reshape(mt, [
                mpo[i].shape[0] * mps[i].shape[0], mpo[i].shape[1],
                mps[i].shape[2], mpo[i].shape[-1] * mps[i].shape[-1]
            ])
            ret[i] = mt

    return ret
Esempio n. 2
0
def create(shape, pdim, config):
    peps_config = np.reshape(config, shape)
    peps0 = zeros(shape, pdim, 1)
    for i in range(shape[0]):
        for j in range(shape[1]):
            peps0[i, j][peps_config[i, j], 0, 0, 0, 0] = 1.
    return peps0
Esempio n. 3
0
def cpeps(peps, config):
    shape = peps.shape
    cpeps = np.empty(shape, dtype=np.object)
    peps_config = np.reshape(config, peps.shape)
    for i in range(shape[0]):
        for j in range(shape[1]):
            cpeps[i, j] = peps[i, j][peps_config[i, j], :, :, :, :]
    return cpeps
Esempio n. 4
0
def aspeps(vec, shape, pdim, bond):
    peps0 = empty(shape, pdim, bond)
    assert vec.size == size(peps0)
    ptr = 0
    for i in range(shape[0]):
        for j in range(shape[1]):
            nelem = peps0[i, j].size
            peps0[i, j] = np.reshape(vec[ptr:ptr + nelem], peps0[i, j].shape)
            ptr += nelem
    return peps0
Esempio n. 5
0
def create(ops):
    """
    Create MPO operator from a
    tensor product of single site operators e.g.
    I otimes c otimes d otimes ...
    """
    pdim = ops[0].shape[0]
    assert ops[0].shape[1] == pdim

    return [N.reshape(op, [1, pdim, pdim, 1]) for op in ops]
Esempio n. 6
0
def from_mps(mps):
    """
    squaren physical indices of MPS to MPO
    """
    pdim = int(math.sqrt(mps[0].shape[1]))
    assert pdim * pdim == mps[0].shape[1]

    return [
        N.reshape(mt, [mt.shape[0], pdim, pdim, mt.shape[2]]) for mt in mps
    ]
Esempio n. 7
0
def to_mps(mpo):
    """
    flatten physical indices of MPO to MPS
    """
    pdim = mpo[0].shape[1]
    assert pdim == mpo[0].shape[2]

    return [
        N.reshape(mt, [mt.shape[0], pdim * pdim, mt.shape[3]]) for mt in mpo
    ]
Esempio n. 8
0
def epeps(pepsa, pepsb):
    shape = pepsa.shape
    epeps = np.empty(shape, dtype=np.object)
    for i in range(shape[0]):
        for j in range(shape[1]):
            epeps[i, j] = einsum("pludr,pLUDR->lLuUdDrR", pepsa[i, j],
                                 pepsb[i, j])
            eshape = epeps[i, j].shape
            epeps[i, j] = np.reshape(
                epeps[i, j], (eshape[0] * eshape[1], eshape[2] * eshape[3],
                              eshape[4] * eshape[5], eshape[6] * eshape[7]))
    return epeps
Esempio n. 9
0
def contract_cpeps(cpeps, auxbond):
    cmps0 = [None] * cpeps.shape[1]
    for i in range(cpeps.shape[1]):
        l, u, d, r = cpeps[0, i].shape
        cmps0[i] = np.reshape(cpeps[0, i], (l, u * d, r))
    for i in range(1, cpeps.shape[0]):
        cmpo = [None] * cpeps.shape[1]
        for j in range(cpeps.shape[1]):
            cmpo[j] = cpeps[i, j]
        cmps0 = mpo.mapply(cmpo, cmps0)
        if auxbond is not None:  # compress
            cmps0 = mps.SVDcompress(cmps0, auxbond)
    return mps.ceval(cmps0, [0] * cpeps.shape[1])
Esempio n. 10
0
def check_lortho(tens):
    tensm = N.reshape(tens, [N.prod(tens.shape[:-1]), tens.shape[-1]])
    s = N.dot(N.conj(tensm.T), tensm)
    return scipy.linalg.norm(s - N.eye(s.shape[0]))
Esempio n. 11
0
def check_rortho(tens):
    tensm = N.reshape(tens, [tens.shape[0], N.prod(tens.shape[1:])])
    s = N.dot(tensm, N.conj(tensm.T))
    return scipy.linalg.norm(s - N.eye(s.shape[0]))
Esempio n. 12
0
def compress(mps, side, trunc=1.e-12, check_canonical=False):
    """
    inp: canonicalise MPS (or MPO)

    trunc=0: just canonicalise
    0<trunc<1: sigma threshold
    trunc>1: number of renormalised vectors to keep

    side='l': compress LEFT-canonicalised MPS 
              by sweeping from RIGHT to LEFT
              output MPS is right canonicalised i.e. CRRR

    side='r': reverse of 'l'
   
    returns:
         truncated or canonicalised MPS
    """
    assert side in ["l", "r"]

    # if trunc==0, we are just doing a canonicalisation,
    # so skip check, otherwise, ensure mps is canonicalised
    if trunc != 0 and check_canonical:
        if side == "l":
            assert is_left_canonical(mps)
        else:
            assert is_right_canonical(mps)

    ret_mps = []
    nsites = len(mps)

    if side == "l":
        res = mps[-1]
    else:
        res = mps[0]

    for i in xrange(1, nsites):
        # physical indices exclude first and last indices
        pdim = list(res.shape[1:-1])

        if side == "l":
            res = N.reshape(res, (res.shape[0], N.prod(res.shape[1:])))
        else:
            res = N.reshape(res, (N.prod(res.shape[:-1]), res.shape[-1]))

        if svd_iop == 0:
            u, sigma, vt = svd(res, full_matrices=False, lapack_driver='gesvd')
        else:
            u, sigma, vt = svd(res, full_matrices=False)

        if trunc == 0:
            m_trunc = len(sigma)
        elif trunc < 1.:
            # count how many sing vals < trunc
            normed_sigma = sigma / scipy.linalg.norm(sigma)
            m_trunc = len([s for s in normed_sigma if s > trunc])
        else:
            m_trunc = int(trunc)
            m_trunc = min(m_trunc, len(sigma))

        u = u[:, 0:m_trunc]
        sigma = N.diag(sigma[0:m_trunc])
        vt = vt[0:m_trunc, :]

        if side == "l":
            u = N.dot(u, sigma)
            res = N.dot(mps[nsites - i - 1], u)
            ret_mpsi = N.reshape(vt, [m_trunc] + pdim +
                                 [vt.shape[1] / N.prod(pdim)])
        else:
            vt = N.dot(sigma, vt)
            res = N.tensordot(vt, mps[i], 1)
            ret_mpsi = N.reshape(u, [u.shape[0] / N.prod(pdim)] + pdim +
                                 [m_trunc])

        ret_mps.append(ret_mpsi)

    ret_mps.append(res)
    if side == "l":
        ret_mps.reverse()

    #fidelity = dot(ret_mps, mps)/dot(mps, mps)
    #print "compression fidelity:: ", fidelity
    return ret_mps