def do_train(table_name, database_path): if not table_name: table_name = DEFAULT_TABLE cache = Cache(default_cache_dir) try: vectors, names = feature_extract(database_path, VGGNet()) print("start connetc to milvus") index_client = milvus_client() # delete_table(index_client, table_name=table_name) # time.sleep(1) status, ok = has_table(index_client, table_name) if not ok: print("create table.") create_table(index_client, table_name=table_name) print("insert into:", table_name) status, ids = insert_vectors(index_client, table_name, vectors) create_index(index_client, table_name) for i in range(len(names)): # cache[names[i]] = ids[i] cache[ids[i]] = names[i] print("Train finished") return "Train finished" except Exception as e: logging.error(e) return "Error with {}".format(e)
def do_train(table_name, data_loader, model, args): if not table_name: table_name = DEFAULT_TABLE cache = Cache(default_cache_dir) try: vectors, names = feature_extract(data_loader, model, args) vectors = vectors / vectors.norm() print(vectors.shape) vectors = vectors.tolist() index_client = milvus_client() # delete_table(index_client, table_name=table_name) # time.sleep(1) status, ok = has_table(index_client, table_name) if not ok: print("create table.") create_table(index_client, table_name=table_name) print("insert into:", table_name) status, ids = insert_vectors(index_client, table_name, vectors) create_index(index_client, table_name) for i in range(len(names)): # cache[names[i]] = ids[i] cache[ids[i]] = names[i] print("Train finished") return "Train finished" except Exception as e: logging.error(e) return "Error with {}".format(e)
def do_load(table_name, database_path): if not table_name: table_name = DEFAULT_TABLE cache = Cache(default_cache_dir) try: vectors, names = feature_extract(table_name, database_path) print("start connetc to milvus") index_client = milvus_client() status, ok = has_table(index_client, table_name) if not ok: print("create table.") create_table(index_client, table_name=table_name) print("insert into:", table_name) # status, ids = insert_vectors(index_client, table_name, vectors) total_ids = [] ids_lens = 0 while ids_lens<len(vectors) : try: status, ids = insert_vectors(index_client, table_name, vectors[ids_lens:ids_lens+100000]) except: status, ids = insert_vectors(index_client, table_name, vectors[ids_lens:len(vectors)]) ids_lens += 100000 total_ids += ids print("ids:",len(ids)) create_index(index_client, table_name) for i in range(len(names)): cache[total_ids[i]] = names[i] print("FP finished") return "FP finished" except Exception as e: logging.error(e) return "Error with {}".format(e)
def init_table(index_client, conn, cursor, milvus_table=MILVUS_TABLE): status, ok = has_table(index_client, milvus_table) if not ok: print("create table.") create_table(index_client, milvus_table) create_index(index_client, milvus_table) create_table_mysql(conn, cursor, milvus_table)
def init_table(index_client, conn, cursor, table_name): status, ok = has_table(index_client, table_name) print("has_table:", status, ok) if not ok: print("create table.") create_table(index_client, table_name) create_index(index_client, table_name) create_table_mysql(conn, cursor, table_name)
def do_train(table_name, database_path): detector = Detector() if not table_name: table_name = DEFAULT_TABLE cache = Cache(default_cache_dir) try: result_images, object_num = run(detector, database_path) #print("after detect:", object_num) vectors, obj_images = get_object_vector(cache, image_encoder, database_path + "/object") #print("after detect:", len(vectors), obj_images) index_client = milvus_client() status, ok = has_table(index_client, table_name) if not ok: print("create table.") create_table(index_client, table_name=table_name) print("insert into:", table_name) # vectors = normaliz_vec(vectors) status, ids = insert_vectors(index_client, table_name, vectors) #print(status,ids) create_index(index_client, table_name) shutil.rmtree(database_path + "/object") imgs = os.listdir(database_path) imgs.sort() #print("-----imgs", imgs) k = 0 ids = list(reversed(ids)) #print("ids", ids) for num in object_num: for i in range(num): a = ids.pop() #print("real;;;;;;;;;",a, imgs[k]) cache[a] = imgs[k] k += 1 return print("train finished") except Exception as e: logging.error(e) return "Error with {}".format(e)
def curd(vectors, img_name, mycol, partition=None, table_name=DEFAULT_TABLE): try: client = milvus_client() if not table_name: table_name = DEFAULT_TABLE status, ok = has_table(client, table_name) if not ok: print('开始创建table') create_table(client, table_name) if partition: status, ok = has_partition(client, table_name, partition) if not ok: create_partition(client, table_name, partition) status, id = insert_vectors(client, table_name, vectors, partition) # 存入缓存 以便后续进行反查 # redis.hset(REDIS_NAME, id[0], img_name) mycol.insert_one({'id': id[0], 'img': img_name, 'table': table_name}) create_index(client, table_name) print('OK 了') return True, '' except Exception as e: logging.error(e) return False, e