Esempio n. 1
0
    def testPolicy(self, symbol = "IBM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):

        syms = [symbol]

        # here we build a fake set of trades
        # your code should return the same sort of data
        syms = [symbol]
        dates = pd.date_range(sd, ed)
        prices, prices_SPY = id.get_price(syms, dates)

        if self.verbose: print prices

        daily_returns = (prices / prices.shift(1)) - 1
        daily_returns = daily_returns[1:]

        # get indicators and combine them into as a feature data_frame
        lookback = 14

        _, PSR = id.get_SMA(prices, lookback)
        _, _, bb_indicator = id.get_BB(prices, lookback)
        momentum = id.get_momentum(prices, lookback)
        indices = prices.index
        holdings = pd.DataFrame(np.nan, index=indices, columns=['Holdings'])
        holdings.iloc[0] = 0

        for i in range(1, daily_returns.shape[0]):

            state = self.indicators_to_state(PSR.iloc[i], bb_indicator.iloc[i],
                                             momentum.iloc[i])

            # Get action by Query learner with current state and reward to get action
            action = self.learner.querysetstate(state)
            #print("SL 286 action is ", action)

            # Get holdings with the new action.
            holdings.iloc[i], _ = self.apply_action(holdings.iloc[i - 1][0],
                                                    action, 0)

        holdings.ffill(inplace=True)
        holdings.fillna(0, inplace=True)
        trades = holdings.diff()
        trades.iloc[0] = 0

        # buy and sell happens when the difference change direction
        df_trades = pd.DataFrame(data=trades.values,
                                 index=trades.index,
                                 columns=['Trades'])

        #print("293: ", df_trades)
        if self.verbose: print type(df_trades)  # it better be a DataFrame!
        if self.verbose: print trades
        if self.verbose: print prices

        return df_trades
Esempio n. 2
0
    def testPolicy(self, symbol, sd, ed, sv=100000):
        # this policy is like this: buy when the price will go up the next day, sell when the price will do down the next day
        # get price data
        dates = pd.date_range(sd, ed)
        prices_all = get_data([symbol],
                              dates,
                              addSPY=True,
                              colname='Adj Close')
        prices = prices_all[symbol]  # only portfolio symbols

        # get indicators
        lookback = 14

        _, PSR = id.get_SMA(prices, lookback)
        _, _, bb_indicator = id.get_BB(prices, lookback)
        momentum = id.get_momentum(prices, lookback)

        holdings = pd.DataFrame(np.nan,
                                index=prices.index,
                                columns=['Holdings'])

        # make sure when PSR (= price / SMA -1) >0.05 and bb_indicator > 1 and momentum > 0.05 SELL or hold -1000
        # when PSR (= price / SMA -1) < -0.05 and bb_indicator < -1 and momentum < -0.05 Buy or hold -1000

        #print("PSR: ", PSR)
        #print("momentum: ", momentum)
        #print("bb_indicator: ", bb_indicator)

        for t in range(prices.shape[0]):
            if PSR.iloc[t] < -0.02 and bb_indicator.iloc[
                    t] < -0.8 and momentum.iloc[t] < -0.03:
                holdings.iloc[t] = 1000
            elif PSR.iloc[t] > 0.02 and bb_indicator.iloc[
                    t] > 0.8 and momentum.iloc[t] > 0.03:
                holdings.iloc[t] = -1000

        # fill the NAN data
        holdings.ffill(inplace=True)
        holdings.fillna(0, inplace=True)
        trades = holdings.diff()
        trades.iloc[0] = 0
        #trades.iloc[-1] = 0
        #trades.columns = 'Trades'

        # buy and sell happens when the difference change direction
        df_trades = pd.DataFrame(data=trades.values,
                                 index=trades.index,
                                 columns=['Trades'])

        return df_trades
Esempio n. 3
0
def experiment1():

    ms = ManualStrategy.ManualStrategy()
    sl = StrategyLearner.StrategyLearner()

    commission = 9.95
    impact = 0.005

    # in sample
    start_date = dt.datetime(2008, 1, 1)
    end_date = dt.datetime(2009, 12, 31)
    # dates = pd.date_range(start_date, end_date)
    symbol = 'JPM'

    sl.addEvidence(symbol=symbol,
                   sd=start_date,
                   ed=end_date,
                   sv=100000,
                   n_bins=5)

    df_trades_ms = ms.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)
    df_trades_sl = sl.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)

    # generate orders based on trades
    df_orders_ms, benchmark_orders = ManualStrategy.generate_orders(
        df_trades_ms, symbol)
    df_orders_sl, _ = ManualStrategy.generate_orders(df_trades_sl, symbol)

    port_vals_ms = ManualStrategy.compute_portvals(df_orders_ms,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    port_vals_sl = ManualStrategy.compute_portvals(df_orders_sl,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    #benchmark_orders.loc[benchmark_orders.index[1], 'Shares'] = 0

    benchmark_vals = ManualStrategy.compute_portvals(benchmark_orders,
                                                     sd=start_date,
                                                     ed=end_date,
                                                     start_val=100000,
                                                     commission=commission,
                                                     impact=impact)

    normed_port_ms = port_vals_ms / port_vals_ms.ix[0]
    normed_port_sl = port_vals_sl / port_vals_sl.ix[0]
    normed_bench = benchmark_vals / benchmark_vals.ix[0]

    dates = pd.date_range(start_date, end_date)
    prices_all = get_data([symbol], dates, addSPY=True, colname='Adj Close')
    prices = prices_all[symbol]  # only portfolio symbols

    # get indicators
    lookback = 14

    _, PSR = id.get_SMA(prices, lookback)
    _, _, bb_indicator = id.get_BB(prices, lookback)
    momentum = id.get_momentum(prices, lookback)

    # figure 5.
    plt.figure(figsize=(12, 6.5))
    top = plt.subplot2grid((5, 1), (0, 0), rowspan=3, colspan=1)
    bottom = plt.subplot2grid((5, 1), (3, 0), rowspan=2, colspan=1, sharex=top)

    # plot the Long or short action
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            plt.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            plt.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    top.xaxis_date()
    top.grid(True)
    top.plot(normed_port_sl, lw=2, color='red', label='Q-Learning Strategy')
    top.plot(normed_port_ms, lw=1.5, color='black', label='Manual Strategy')
    top.plot(normed_bench, lw=1.2, color='green', label='Benchmark')

    top.set_title(
        'Machine Learning Strategy (MLS), Manual Strategy (MS) - In Sample Analysis'
    )
    top.set_ylabel('Normalized Value')
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            top.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            top.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    bottom.plot(momentum, color='olive', lw=1, label="momentum")
    bottom.plot(PSR, color='purple', lw=1, label="PSR")
    #bottom.plot(bb_indicator, color='blue', lw=1, label="Bollinger")
    bottom.set_title('Indicators')

    bottom.axhline(y=-0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.legend()

    top.legend()
    top.axes.get_xaxis().set_visible(False)
    plt.xlim(start_date, end_date)

    filename = '01_MLS_insample.png'

    plt.savefig(filename)

    plt.close()

    port_cr_sl, port_adr_sl, port_stddr_sl, port_sr_sl = ManualStrategy.get_portfolio_stats(
        port_vals_sl)
    port_cr_ms, port_adr_ms, port_stddr_ms, port_sr_ms = ManualStrategy.get_portfolio_stats(
        port_vals_ms)
    bench_cr, bench_adr, bench_stddr, bench_sr = ManualStrategy.get_portfolio_stats(
        benchmark_vals)

    # Compare portfolio against benchmark
    print "=== Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) In Sample ==="
    print "Date Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of MLS: {}".format(port_sr_sl)
    print "Sharpe Ratio of MS: {}".format(port_sr_ms)
    print "Sharpe Ratio of BenchMark : {}".format(bench_sr)
    print
    print "Cumulative Return of MLS: {}".format(port_cr_sl)
    print "Cumulative Return of MS: {}".format(port_cr_ms)
    print "Cumulative Return of Benchmark : {}".format(bench_cr)
    print
    print "Standard Deviation of MLS: {}".format(port_stddr_sl)
    print "Standard Deviation of MS: {}".format(port_stddr_ms)
    print "Standard Deviation of Benchmark : {}".format(bench_stddr)
    print
    print "Average Daily Return of MLS: {}".format(port_adr_sl)
    print "Average Daily Return of MS: {}".format(port_adr_ms)
    print "Average Daily Return of BenchMark : {}".format(bench_adr)
    print
    print "Final MLS Portfolio Value: {}".format(port_vals_sl[-1])
    print "Final MS Portfolio Value: {}".format(port_vals_ms[-1])
    print "Final Benchmark Portfolio Value: {}".format(benchmark_vals[-1])
    print

    # ========================
    # OUT OF SAMPLE Analysis
    # ========================
    start_date = dt.datetime(2010, 1, 1)
    end_date = dt.datetime(2011, 12, 31)
    # dates = pd.date_range(start_date, end_date)
    symbol = 'JPM'

    df_trades_ms = ms.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)
    df_trades_sl = sl.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)

    # generate orders based on trades
    df_orders_ms, benchmark_orders = ManualStrategy.generate_orders(
        df_trades_ms, symbol)
    df_orders_sl, _ = ManualStrategy.generate_orders(df_trades_sl, symbol)

    port_vals_ms = ManualStrategy.compute_portvals(df_orders_ms,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    port_vals_sl = ManualStrategy.compute_portvals(df_orders_sl,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    #benchmark_orders.loc[benchmark_orders.index[1], 'Shares'] = 0

    benchmark_vals = ManualStrategy.compute_portvals(benchmark_orders,
                                                     sd=start_date,
                                                     ed=end_date,
                                                     start_val=100000,
                                                     commission=commission,
                                                     impact=impact)

    normed_port_ms = port_vals_ms / port_vals_ms.ix[0]
    normed_port_sl = port_vals_sl / port_vals_sl.ix[0]
    normed_bench = benchmark_vals / benchmark_vals.ix[0]

    dates = pd.date_range(start_date, end_date)
    prices_all = get_data([symbol], dates, addSPY=True, colname='Adj Close')
    prices = prices_all[symbol]  # only portfolio symbols

    # get indicators
    lookback = 14

    _, PSR = id.get_SMA(prices, lookback)
    _, _, bb_indicator = id.get_BB(prices, lookback)
    momentum = id.get_momentum(prices, lookback)

    # figure 5.
    plt.figure(figsize=(12, 6.5))
    top = plt.subplot2grid((5, 1), (0, 0), rowspan=3, colspan=1)
    bottom = plt.subplot2grid((5, 1), (3, 0), rowspan=2, colspan=1, sharex=top)

    # plot the Long or short action
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            plt.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            plt.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    top.xaxis_date()
    top.grid(True)
    top.plot(normed_port_sl, lw=2, color='red', label='Q-Learning Strategy')
    top.plot(normed_port_ms, lw=1.5, color='black', label='Manual Strategy')
    top.plot(normed_bench, lw=1.2, color='green', label='Benchmark')

    top.set_title(
        'Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) - Out Sample Analysis'
    )
    top.set_ylabel('Normalized Value')
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            top.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            top.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    bottom.plot(momentum, color='olive', lw=1, label="momentum")
    bottom.plot(PSR, color='purple', lw=1, label="PSR")
    #bottom.plot(bb_indicator, color='blue', lw=1, label="Bollinger")
    bottom.set_title('Indicators')

    bottom.axhline(y=-0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.legend()

    top.legend()
    top.axes.get_xaxis().set_visible(False)
    plt.xlim(start_date, end_date)

    filename = '02_MLS_outsample.png'

    plt.savefig(filename)

    plt.close()

    port_cr_sl, port_adr_sl, port_stddr_sl, port_sr_sl = ManualStrategy.get_portfolio_stats(
        port_vals_sl)
    port_cr_ms, port_adr_ms, port_stddr_ms, port_sr_ms = ManualStrategy.get_portfolio_stats(
        port_vals_ms)
    bench_cr, bench_adr, bench_stddr, bench_sr = ManualStrategy.get_portfolio_stats(
        benchmark_vals)

    # Compare portfolio against benchmark
    print "=== Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) OUT Sample ==="
    print "Date Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of MLS: {}".format(port_sr_sl)
    print "Sharpe Ratio of MS: {}".format(port_sr_ms)
    print "Sharpe Ratio of BenchMark : {}".format(bench_sr)
    print
    print "Cumulative Return of MLS: {}".format(port_cr_sl)
    print "Cumulative Return of MS: {}".format(port_cr_ms)
    print "Cumulative Return of Benchmark : {}".format(bench_cr)
    print
    print "Standard Deviation of MLS: {}".format(port_stddr_sl)
    print "Standard Deviation of MS: {}".format(port_stddr_ms)
    print "Standard Deviation of Benchmark : {}".format(bench_stddr)
    print
    print "Average Daily Return of MLS: {}".format(port_adr_sl)
    print "Average Daily Return of MS: {}".format(port_adr_ms)
    print "Average Daily Return of BenchMark : {}".format(bench_adr)
    print
    print "Final MLS Portfolio Value: {}".format(port_vals_sl[-1])
    print "Final MS Portfolio Value: {}".format(port_vals_ms[-1])
    print "Final Benchmark Portfolio Value: {}".format(benchmark_vals[-1])
    print
Esempio n. 4
0
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 10000,n_bins=6):

        # this method should create a QLearner, and train it for trading

        syms = [symbol]
        dates = pd.date_range(sd, ed)
        prices, prices_SPY = id.get_price(syms, dates)

        if self.verbose: print prices

        daily_returns = (prices / prices.shift(1)) - 1
        daily_returns = daily_returns[1:]

        # get indicators and combine them into as a feature data_frame
        lookback = 14

        _, PSR = id.get_SMA(prices, lookback)
        _, _, bb_indicator = id.get_BB(prices, lookback)
        momentum = id.get_momentum(prices, lookback)

        _, self.pbins = pd.qcut(PSR, n_bins, labels=False, retbins=True)
        _, self.bbins = pd.qcut(bb_indicator,
                                n_bins,
                                labels=False,
                                retbins=True)
        _, self.mbins = pd.qcut(momentum, n_bins, labels=False, retbins=True)
        self.pbins = self.pbins[1:-1]
        self.bbins = self.bbins[1:-1]
        self.mbins = self.mbins[1:-1]

        # start training

        converged = False
        df_trades = None

        count = 0

        old_cum_ret = 0.0
        converge_count = 0
        converged_prev = False

        #print "Total number of states is:", total_states

        # Initialize QLearner,

        self.learner = ql.QLearner(num_states=100 * n_bins,
                                   num_actions=self.num_actions,
                                   alpha=0.5,
                                   gamma=0.9,
                                   rar=0.0,
                                   radr=0.0,
                                   dyna=0,
                                   verbose=self.verbose)

        while (not converged) and (count < 100):
            # Set first state to the first data point (first day)
            indices = daily_returns.index
            holdings = pd.DataFrame(np.nan,
                                    index=indices,
                                    columns=['Holdings'])
            #first_state = self.indicators_to_state(PSR.iloc[0], bb_indicator.iloc[0], momentum.iloc[0])

            #print("SL 152: holdings.iloc[0] = ", holdings.iloc[0][0], "; daily_rets.iloc[1] = ", daily_returns.iloc[1][0])
            holdings.iloc[0] = 0.
            #print("SL 153")

            #df_prices = prices.copy()
            #df_prices['Cash'] = pd.Series(1.0, index=indices)
            #df_trades = df_prices.copy()
            #df_trades[:] = 0.0

            state = self.indicators_to_state(PSR.iloc[0], bb_indicator.iloc[0],
                                             momentum.iloc[0])
            action = self.learner.querysetstate(state)
            holdings.iloc[0], reward = self.apply_action(
                holdings.iloc[0][0], action, daily_returns.iloc[1][0])

            #print("SL 171: PSR.shape[0] = ",PSR.shape[0],"; daily_returns.shape[0] = ",daily_returns.shape[0])

            # Cycle through dates
            for j in range(1, daily_returns.shape[0]):

                state = self.indicators_to_state(PSR.iloc[j],
                                                 bb_indicator.iloc[j],
                                                 momentum.iloc[j])

                # Get action by Query learner with current state and reward to get action

                action = self.learner.query(state, reward)

                # update reward and holdings with the new action.
                holdings.iloc[j], reward = self.apply_action(
                    holdings.iloc[j - 1][0], action, daily_returns.iloc[j][0])
                #print("SL 183: holdings.iloc[j][0] = ",holdings.iloc[j][0])

                # Implement action returned by learner and update portfolio
            #print("SL 206: one learning is done.")
            #print("SL 215, holdings.iloc[0]",holdings.iloc[0])
            holdings.iloc[-1] = 0
            holdings.ffill(inplace=True)
            holdings.fillna(0, inplace=True)
            #print("SL 216 holdings = ",holdings)
            trades = holdings.diff()
            trades.iloc[0] = 0

            # buy and sell happens when the difference change direction
            df_trades = pd.DataFrame(data=trades.values,
                                     index=indices,
                                     columns=['Trades'])

            df_orders, _ = generate_orders(df_trades, symbol)

            port_vals = compute_portvals(df_orders,
                                         sd=sd,
                                         ed=ed,
                                         impact=self.impact,
                                         start_val=sv,
                                         commission=self.commission)

            cum_ret, _, _, _ = get_portfolio_stats(port_vals)

            count += 1

            old_cum_ret,converged_prev,converge_count,converged = \
                check_convergence(old_cum_ret,cum_ret,converged_prev,converge_count)

            # check if converge
            #if converged:
            #print("SL 212: converged at iteration # ",count, "cum_ret is: ", cum_ret)

        return df_trades

        # example use with new colname
        volume_all = ut.get_data(syms, dates,
                                 colname="Volume")  # automatically adds SPY
        volume = volume_all[syms]  # only portfolio symbols
        volume_SPY = volume_all['SPY']  # only SPY, for comparison later
        if self.verbose: print volume
Esempio n. 5
0
def SMA_test():
    data = load_data(DATA_STOCK)
    SMA = get_SMA(data["close"].tolist(), 0, data["close"].shape[0])
    print(SMA)
Esempio n. 6
0
    def testPolicy(self,
                   symbol="JPM",
                   sd=dt.datetime(2008, 1, 1),
                   ed=dt.datetime(2009, 12, 31),
                   sv=100000):
        '''
        The input parameters are:
            symbol: the stock symbol to act on
            sd: A datetime object that represents the start date
            ed: A datetime object that represents the end date
            sv: Start value of the portfolio

        The output df_trades in form:   Date | Symbol | Order | Shares
        '''
        # window = 10
        dates = pd.date_range(sd, ed)
        symbols = symbol
        prices = ut.get_data([symbol], dates)
        prices.fillna(method='ffill', inplace=True)
        prices.fillna(method='bfill', inplace=True)
        #     print("prices[:20]")
        #     print(prices[:20])
        #     print(len(prices))

        # 1. compute the 3 indicators from indicator.py
        # note: first 10 days might be no tradings since they are within the window time frame and 3 indicators rerturns N/A
        SMA = ind.get_SMA(prices, symbols, self.window)
        price_SMA_ratio = ind.get_SMA_ratio(prices, symbols, self.window)
        momentum = ind.get_momentum(prices, self.window)
        bb_value = ind.get_bollinger_band(prices, symbols, self.window)

        #     print('Price/SMA ratio print here:')
        #     print(price_SMA_ratio[:20])
        #     print(len(price_SMA_ratio))
        #     print('================')
        #     print('momentum print here:')
        #     print(momentum[:20])
        #     print(len(momentum))
        #     print('================')
        #     print('bb_value print here:')
        #     print(bb_value[:20])
        #     print('================')

        #This is for creating the dataframe for df_trades
        symbol_list = []
        date_range = []
        price_of_day = []
        order = []
        share = []

        current_shares = 0
        net_hold = 0  #net_hold = 0 no share, net_hold = 1: long position, net_hold = -1 shorted position
        buy_date = []
        sell_date = []

        #for SMA_ratio: small should buy, large should sell
        #for momemtum: negative should sell, positive should buy
        #for bb_value: small should buy, large should sell
        for i in range(len(prices.index) - 1):  # for i in 0 - 504
            symbol_list.append(symbol)
            date_range.append(prices.index[i])
            price_of_day.append(prices[symbol][i])

            #when you should buy
            if price_SMA_ratio['Price/SMA ratio'][i] < 0.95 or momentum[symbol][
                    i] > 0.3 or bb_value[i] <= 0.6 and current_shares == 0:
                order.append("BUY")
                share.append(1000)
                current_shares += 1000
            elif price_SMA_ratio['Price/SMA ratio'][i] < 0.95 or momentum[
                    symbol][
                        i] > 0.3 or bb_value[i] <= 0.6 and current_shares < 0:
                order.append("BUY")
                share.append(2000)
                current_shares += 2000

            #when you should sell
            elif price_SMA_ratio['Price/SMA ratio'][i] > 1.0 or momentum[
                    symbol][i] < -0.15 or bb_value[
                        i] > 0.9 and current_shares == 0:
                order.append("SELL")
                share.append(-1000)
                current_shares += -1000
            elif price_SMA_ratio['Price/SMA ratio'][i] > 1.0 or momentum[
                    symbol][
                        i] < -0.15 or bb_value[i] > 0.9 and current_shares > 0:
                order.append("SELL")
                share.append(-2000)
                current_shares += -2000

            else:
                order.append("HOLD")
                share.append(0)
                current_shares += 0

        #create the dataframe to store the result
        df_trades = pd.DataFrame(
            index=date_range, columns=['Symbol', 'Prices', 'Order', 'Shares'])
        df_trades['Symbol'] = symbol_list
        df_trades['Prices'] = price_of_day
        df_trades['Order'] = order
        df_trades['Shares'] = share

        # print("df_trades[:20]")
        # print(df_trades[:20])
        # print(len(df_trades))
        return df_trades