Esempio n. 1
0
def assemble_pybel(stmts, out_file_prefix):
    """Return a PyBEL Assembler"""
    stmts = ac.filter_belief(stmts, 0.95)
    stmts = ac.filter_top_level(stmts)

    pba = PybelAssembler(stmts,
                         name='INDRA/REACH Korkut Model',
                         description='Automatically assembled model of '
                         'cancer signaling.',
                         version='0.0.10')
    pba.make_model()
    pybel.to_bel_path(pba.model, out_file_prefix + '.bel')
    with open(out_file_prefix, 'wt') as f:
        pybel.to_json_file(pba.model, f)
    url = 'https://pybel.scai.fraunhofer.de/api/receive'
    headers = {'content-type': 'application/json'}
    requests.post(url, json=pybel.to_json(pba.model), headers=headers)
Esempio n. 2
0
def from_indra_statements(statements, name=None, version=None, description=None):
    """Imports a model from :mod:`indra`.

    :param list[indra.statements.Statement] statements: A list of statements
    :param str name: The name for the BEL graph
    :param str version: The version of the BEL graph
    :param str description: The description of the BEL graph
    :rtype: pybel.BELGraph
    """
    from indra.assemblers import PybelAssembler

    pba = PybelAssembler(
        stmts=statements,
        name=name,
        version=version,
        description=description
    )

    graph = pba.make_model()

    return graph
Esempio n. 3
0
    ActiveForm(elk1_p, 'transcription', True),
    IncreaseAmount(elk1_tscript, fos),
    Conversion(hk1, [glu], [g6p]),
    Complex([egfr, grb2, sos1]),
    Autophosphorylation(p38_tab1, 'Y', '100'),
    Transphosphorylation(egfr_dimer, 'Y', '1173'),
]

ev = Evidence('assertion', 'assertion', 'assertion', 'assertion')
for stmt in stmts:
    stmt.evidence = [ev]

model_description = 'Test of INDRA Statement assembly into PyBEL.'
print("Assembling to PyBEL...")

pba = PybelAssembler(stmts,
                     name='INDRA_PyBEL_test',
                     description=model_description,
                     version='0.0.22')
belgraph = pba.make_model()

# Write to BEL file
pybel.to_bel_path(belgraph, 'simple_pybel.bel')

# Upload to PyBEL web
with open('pybel_model.json', 'wt') as f:
    pybel.to_json_file(pba.model, f)
url = 'https://pybel.scai.fraunhofer.de/api/receive'
headers = {'content-type': 'application/json'}
requests.post(url, json=pybel.to_json(pba.model), headers=headers)
Esempio n. 4
0
    Complex([egfr, grb2, sos1]),
    ActiveForm(sos1_bound, 'gef', True),
    Autophosphorylation(p38_tab1, 'Y', '100'),
    Transphosphorylation(egfr_dimer, 'Y', '1173'),
]

ev = Evidence('assertion', 'assertion', 'assertion', 'assertion')
for stmt in stmts:
    stmt.evidence = [ev]

model_description = 'Test of INDRA Statement assembly into PyBEL.'
print("Assembling to PyBEL...")

pba = PybelAssembler(
    stmts,
    name='INDRA_PyBEL_test',
    description=model_description,
    authors='John Bachman',
)
belgraph = pba.make_model()

# Write to BEL file
#pybel.to_bel_path(belgraph, 'simple_pybel.bel')

# Upload to PyBEL web
#with open('pybel_model.json', 'wt') as f:
#    pybel.to_json_file(pba.model, f)
#url =  'https://pybel.scai.fraunhofer.de/api/receive'
#headers = {'content-type': 'application/json'}
#requests.post(url, json=pybel.to_json(pba.model), headers=headers)

# Put in local database
Esempio n. 5
0
    prize_outpath = "../work/pybel_prize.tsv"
    interactome_path = "../work/big_pybel_interactome2.tsv"
    site_file = "../work/gsea_sites.rnk"
    # Load the statements linking kinases/regulators to phospho sites
    # in the data
    stmts = ac.load_statements(stmts)

    # Employ filters to reduce network size
    stmts = ac.filter_grounded_only(stmts)
    stmts = ac.filter_human_only(stmts)
    stmts = ac.filter_genes_only(stmts)
    # In this data, statements of these two types will not act on
    # a short enough timescale to play a meaningful role
    stmts = ac.filter_by_type(stmts, DecreaseAmount, invert=True)
    stmts = ac.filter_by_type(stmts, IncreaseAmount, invert=True)
    stmts = ac.filter_by_type(stmts, Complex, invert=True)
    stmts = ac.filter_enzyme_kinase(stmts)

    # Assemble a pybel graph from statements
    pba = PybelAssembler(stmts)
    pb_graph = make_model(pba)

    signed_graph = to_signed_nodes(pb_graph)
    gn_dict = get_gene_node_dict(signed_graph)
    # Next we have to load the data file and assign values to

    site_data = read_site_file(site_file)

    dump_steiner_files(signed_graph, site_data, prize_outpath,
                       interactome_path)
Esempio n. 6
0
def stmts_to_pybel_graph(stmts):
    pba = PybelAssembler(stmts, name='INDRA/REACH Fallahi Eval Model',
                         description='Automatically assembled model.',
                         version='0.0.1')
    pba.make_model()
    return pba.to_signed_graph()
Esempio n. 7
0
    parser.add_argument("--grounded", action="store_true")
    parser.add_argument("--human", action="store_true")
    parser.add_argument("--gene", action="store_true")
    parser.add_argument("--stmts")
    parser.add_argument("--prize_outpath")
    parser.add_argument("--interactome_outpath")
    parser.add_argument("--site_file")
    args = parser.parse_args()
    stmts = args.stmts
    # Load the statements linking kinases/regulators to phospho sites in the data
    stmts = ac.load_statements(stmts)
    if args.grounded:
        stmts = ac.filter_grounded_only(stmts)
    if args.human:
        stmts = ac.filter_human_only(stmts)
    if args.gene:
        stmts = ac.filter_genes_only(stmts)

    # Assemble a PyBEL graph from the stmts
    pba = PybelAssembler(stmts)
    pb_graph = pba.make_model()

    signed_graph = to_signed_nodes(pb_graph)
    gn_dict = get_gene_node_dict(signed_graph)
    # Next we have to load the data file and assign values to

    site_data = read_site_file(args.site_file)

    dump_steiner_files(signed_graph, site_data, args.prize_outpath,
                       args.interactome_outpath)