def main(): if IS_TRAINING: content_imgs_path = list_images(TRAINING_CONTENT_DIR) style_imgs_path = list_images(TRAINING_STYLE_DIR) for style_weight, model_save_path in zip(STYLE_WEIGHTS, MODEL_SAVE_PATHS): print('\n>>> Begin to train the network with the style weight: %.2f\n' % style_weight) train(style_weight, content_imgs_path, style_imgs_path, ENCODER_WEIGHTS_PATH, model_save_path, logging_period=LOGGING_PERIOD, debug=True) print('\n>>> Successfully! Done all training...\n') else: content_imgs_path = list_images(INFERRING_CONTENT_DIR) style_imgs_path = list_images(INFERRING_STYLE_DIR) for style_weight, model_save_path in zip(STYLE_WEIGHTS, MODEL_SAVE_PATHS): print('\n>>> Begin to stylize images with style weight: %.2f\n' % style_weight) stylize(content_imgs_path, style_imgs_path, OUTPUTS_DIR, ENCODER_WEIGHTS_PATH, model_save_path, suffix='-' + str(style_weight)) print('\n>>> Successfully! Done all stylizing...\n')
def main(): if IS_TRAINING: training_imgs_paths = list_images(TRAINING_IMGS_PATH) train(training_imgs_paths, ENCODER_WEIGHTS_PATH, MODEL_SAVE_PATH, autoencoder_levels=AUTUENCODER_LEVELS_TRAIN, debug=DEBUG, logging_period=LOGGING_PERIOD) print('\n>>>>>> Successfully done training...\n') else: contents_path = list_images(CONTENTS_DIR) styles_path = list_images(STYLES_DIR) model_path = MODEL_SAVE_PATH + MODEL_SAVE_SUFFIX stylize(contents_path, styles_path, OUTPUT_DIR, ENCODER_WEIGHTS_PATH, model_path, style_ratio=STYLE_RATIO, repeat_pipeline=REPEAT_PIPELINE, autoencoder_levels=AUTUENCODER_LEVELS_INFER) print('\n>>>>>> Successfully done stylizing...\n')
def main(): if IS_TRAINING: content_imgs_path = list_images(TRAINING_CONTENT_DIR) style_imgs_path = list_images(TRAINING_STYLE_DIR) tf.reset_default_graph() for style_weight, content_weight, lambda1, lambda2, model_save_path in zip( STYLE_WEIGHTS, CONTENT_WEIGHTS, LAMBDA1, LAMBDA2, MODEL_SAVE_PATHS): print('\n>>> Begin to train the network') train(style_weight, content_weight, lambda1, lambda2, content_imgs_path, style_imgs_path, ENCODER_WEIGHTS_PATH, model_save_path, logging_period=LOGGING_PERIOD, debug=True) print('\n>>> Successfully! Done all training...\n') else: content_imgs_path = list_images(INFERRING_CONTENT_DIR) style_imgs_path = list_images(INFERRING_STYLE_DIR) for style_weight, content_weight, lambda1, lambda2, model_save_path in zip( STYLE_WEIGHTS, CONTENT_WEIGHTS, LAMBDA1, LAMBDA2, MODEL_SAVE_PATHS): print('\n>>> Begin to stylize images') stylize(content_imgs_path, style_imgs_path, OUTPUTS_DIR, ENCODER_WEIGHTS_PATH, model_save_path, suffix='-' + str(style_weight) + '-' + str(content_weight) + '-' + str(lambda1) + '-' + str(lambda2)) print('\n>>> Successfully! Done all stylizing...\n')
def main(): content_imgs_path = list_images(INFERRING_CONTENT_DIR) style_imgs_path = list_images(INFERRING_STYLE_DIR) for style_weight, model_save_path in product(STYLE_WEIGHTS, MODEL_SAVE_PATHS): print('\n>>> Begin to stylize images with style weight: %.2f\n' % style_weight) stylize(content_imgs_path, style_imgs_path, OUTPUTS_DIR, ENCODER_WEIGHTS_PATH, model_save_path, suffix='-' + str(style_weight), alpha=style_weight) print('\n>>> Successfully! Done all stylizing...\n')
def main(): if IS_TRAINING: content_imgs_path = list_images(TRAINING_CONTENT_DIR) style_imgs_path = list_images(TRAINING_STYLE_DIR) for style_weight, model_save_path in zip(STYLE_WEIGHTS, MODEL_SAVE_PATHS): print( '\n>>> Begin to train the network with the style weight: %.2f\n' % style_weight) train(style_weight, content_imgs_path, style_imgs_path, ENCODER_WEIGHTS_PATH, model_save_path, logging_period=LOGGING_PERIOD, debug=True) print('\n>>> Successfully! Done all training...\n') else: # load all images at a time, so OOM error will occur # when content images size and style images size are too big. content_imgs_path = list_images(INFERRING_CONTENT_DIR) print("content_imgs_path:", content_imgs_path) content_imgs_path = list_images(INFERRING_CONTENT_DIR)[18] style_imgs_path = list_images(INFERRING_STYLE_DIR)[:12] for style_weight, model_save_path in zip(STYLE_WEIGHTS, MODEL_SAVE_PATHS): print('\n>>> Begin to stylize images with style weight: %.2f\n' % style_weight) start_time = time.time() outputs = stylize(content_imgs_path, style_imgs_path, OUTPUTS_DIR, ENCODER_WEIGHTS_PATH, model_save_path, suffix='-' + str(style_weight)) end_time = time.time() sum_time = end_time - start_time avg_time = sum_time / (len(content_imgs_path) * len(style_imgs_path)) print("sum_time:", sum_time, "content_imgs size:", len(content_imgs_path), "style_imgs size:", len(style_imgs_path)) print('\n>>> Successfully! Done all stylizing in {}s'.format(avg_time))