def main(): parser = argparse.ArgumentParser() parser.add_argument("-t", "--time", help="Time elapsed, in seconds, so far in the game", required=True, type=int) parser.add_argument("-s", "--spread", help="Spread, relative to visiting team", required=True, type=float) parser.add_argument("-f", "--favorite", help="Current point total for the favorite", required=True, type=int) parser.add_argument("-u", "--underdog", help="Current point total for the underdog", required=True, type=int) args = parser.parse_args() time_sec = args.time spread = args.spread favorite_points = args.favorite underdog_points = args.underdog assert time_sec >= 0, "Time must be a positive integer" assert favorite_points >= 0, "Favorite points must be a positive integer" assert favorite_points >= 0, "Underdog points must be a positive integer" model = inference.load_model(MODEL_PATH) scaler = inference.load_scaler(SCALER_PATH) pred = inference.run_inference(model, scaler, time_sec, spread, favorite_points, underdog_points) print(pred)
def main(image_path, checkpoint_path): # 加载图像和模型 image = cv2.imread(image_path) model = load_model(checkpoint_path) client = net() flag = 0 while True: if flag: word = input("input:\n ") if not len(word): continue word2audio(client, word) frames = gen_fake(model, 'audio/audio.wav', image) # 播放语音和视频 pygame.mixer.init() pygame.mixer.music.load('audio/audio.wav') # 加载音乐 pygame.mixer.music.play() # 播放 for im in frames: cv2.imshow('frame', im) cv2.waitKey(1) time.sleep(1 / fps) # cv2.waitKey(1000//fps) pygame.quit() while True: frame = image # 显示结果帧e cv2.imshow('frame', frame) if cv2.waitKey(1) == 27: # ord('q') enter:13 esc:27 flag = 1 break
def __init__(self, recOps, people): self.running = False self.audio = pyaudio.PyAudio() self.stream = self.audio.open(format=recOps['Format'], channels=recOps['Channels'], rate=recOps['Rate'], input=True, frames_per_buffer=recOps['Chunk']) self.vad = webrtcvad.Vad() self.vad.set_mode(1) self.recording = False self.audioPercent = 100 self.recOps = recOps self.check = False self.pastFrames = [] self.lock = threading.Lock() self.people = people encoder.load_model("encoder/saved_models/pretrained.pt") synthesizer = Synthesizer("synthesizer/saved_models/logs-pretrained/".joinpath("taco_pretrained"), low_mem=args.low_mem) vocoder.load_model("vocoder/saved_models/pretrained/pretrained.pt")
def inferencer(work_queue): running = True data = work_queue.get() if type(data) == bool: running = data elif type(data) == ClassifiedImageBundle: data.set_progress() while running: model = load_model(data.get_np_array().shape) prediction = model.predict(np.array([data.get_np_array() / 255]), batch_size=1) print(prediction[0]) data.set_classification(prediction[0]) work_queue.task_done() data = work_queue.get() if type(data) == bool: running = data elif type(data) == ClassifiedImageBundle: data.set_progress()
@app.route('/') def home_endpoint(): return render_template('home.html') @app.route('/predict', methods=['POST']) def get_prediction(): image = request.files['file'] if image.filename != '': fn = os.path.join(app.config['UPLOAD_FOLDER'], image.filename + str(datetime.now().time())) image.save(fn) image = load_image(fn) res, preprocessed_image = inference(image) preprocessed_image = Image.fromarray(np.uint8(preprocessed_image * 255)).convert('RGB') buffer = BytesIO() preprocessed_image.save(buffer, format="PNG") myimage = buffer.getvalue() return jsonify(message=res, image=str(base64.b64encode(myimage))[2:-1]) if __name__ == '__main__': model = None load_model('model') app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 5000)))
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf from tensorflow import keras from tensorflow_core.python.keras.api._v2.keras import layers from inference import load_model, inference from PathfindingDll import load_PathfindingDLL import MCTS estimate = load_PathfindingDLL() model = load_model() model.fit(test_input, test_target) model.save('path/to/location')
from flask import Flask, flash, request, redirect, url_for, render_template, jsonify from werkzeug.utils import secure_filename from inference import load_model, get_result ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) UPLOAD_FOLDER = 'static/uploads/' app = Flask(__name__) app.secret_key = "secret key" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER filename = '' netMain, metaMain = load_model() def allowed_file(filename): return '.' in filename and filename.rsplit( '.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/') def upload_form(): return render_template('upload.html') @app.route('/', methods=['POST']) def upload_image(): if 'file' not in request.files:
# Libs import torch import numpy as np from sklearn.linear_model import LogisticRegression # Own modules from infer_sentence import make_ds from dudu_utils import preprocess, process_block from inference import load_model, infer_dataset # Settings # model_path = r'./models/cnw-2020-04-29_20-02-45.pth.tar' model_path = r'./models/sswer-2020-04-29_15-47-38.pth.tar' checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) lut = checkpoint['lut'] model = load_model(model_path, len(lut)) window_size = 3 step_size = 3 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') BUFFER_DIR = './buffer' def train_clf(network, dev): dataset, vocab_size = make_ds() ftrs, lbls = infer_dataset(network, dataset, dev) clf = LogisticRegression(max_iter=1000) clf.fit(ftrs, lbls) return clf def pred_sentence():
def load_model_cached(model_file): model = load_model(model_file) model.eval() return model
from MCTS import Node from PathfindingDll import load_PathfindingDLL from GameControlerDLL import load_GameControlerDLL from Game import get_random_start import numpy as np from inference import get_move_to_index, load_model import tensorflow as tf model = load_model('test') inputs = np.ones(shape=(1, 9, 9, 4), dtype=np.float32) policy = model(inputs, training=True)
def save_pt_model(path: str) -> None: """ path: path to which .pt file will be exported """ model = load_model() torch.save(model.state_dict(), path)
import cv2 from torchvision import models import torchvision.transforms as transforms from PIL import Image from flask import Flask, jsonify, request import base64 import numpy as np import sys sys.path.append('../ML') from inference import prepare_image, load_model, inference class_names = ["KIA Rio", "SKODA OCTAVIA", "Hyundai SOLARIS", "Volkswagen Polo", "Volkswagen Tiguan"] mpath = '../eval/model.pth' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(mpath, device) app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): if request.method == 'POST': bm = request.form['content'] bb = bm.encode('ascii') m = base64.b64decode(bb) nparr = np.fromstring(m, np.uint8) image = cv2.imdecode(nparr, cv2.IMREAD_COLOR) / 255. data = prepare_image(image)['image'].to(device).type(torch.float) res = inference(model, data)[0] res_dict = {k: v for k, v in zip(class_names, res)} return jsonify({'default': res_dict})
app.logger.setLevel(logging.DEBUG) logHandler = handlers.RotatingFileHandler('logs/app.log', maxBytes=1000000, backupCount=5) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') logHandler.setFormatter(formatter) app.logger.addHandler(logHandler) MODEL_PATH = 'model/model.h5' SCALER_PATH = 'model/scaler.pkl' # load the model the model and scaler globally on startup global graph # Allow the graph to be accessed within the app context graph = tf.get_default_graph() model = inference.load_model(MODEL_PATH) scaler = inference.load_scaler(SCALER_PATH) @app.route("/games/<year>/<phase>/<week>") def get_game_data_by_week(year, phase, week): app.logger.debug("Starting request for game data for {}:{}{}".format( year, phase, week)) if phase.upper() not in {"PRE", "REG", "POST"}: raise BadRequest('Phase must be one of PRE, REG, POST') try: game_data = nfl_api.get_game_data(year, phase, week) except Exception as e: app.logger.error(e) raise HTTPException("Error collecting game data")
'home.html') @app.route('/predict', methods=['POST']) def get_prediction(): image = request.files['file'] if image.filename != '': fn = os.path.join( app.config['UPLOAD_FOLDER'], image.filename + str(datetime.now().time()) ) image.save(fn) image = load_image(fn) os.remove(fn) res_image, res = run_on_image(image) res_image = Image.fromarray(np.uint8(res_image)).convert('RGB') image_height_over_width = res_image.size[1] / res_image.size[0] #res_image = res_image.resize((260, int(image_height_over_width * 260))) buffer = BytesIO() res_image.save(buffer, format="PNG") return_image = buffer.getvalue() return jsonify(message=res, image=str(base64.b64encode(return_image))[2:-1]) if __name__ == '__main__': model = None load_model('mask_detector/models/model360.pth') app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 5000)))