def __init__(self, params, datas, model_dict): super(BVA, self).__init__() # embedding layer self.embeddings = XlingEmbeddingLayer(params, datas) # encoder self.encoder = Encoder(params) # discriminator for adversarial training self.adv_training = params.adv_training if self.adv_training: self.discriminator = XlingDiscriminator(params) # inferer self.inferer = Inferer(params, params.inf_in_dim) # vae type self.vae_type = params.vae_type # decoder # untie the embeddings if params.tie_emb: self.decoder = XlingDecoder(params, datas, self.embeddings) else: embeddings = copy.deepcopy(self.embeddings) """ # random initialization for emb in embeddings.embeddings: initrange = 0.5 / 300 emb.embeddings.weight.data.uniform_(-initrange, initrange) emb.embeddings.weight.data[0] = 0 """ self.decoder = XlingDecoder(params, datas, embeddings) # load pretrained model if model_dict is not None: self.init_model(self, model_dict) # load pretrained embeddings again in case we need if model_dict is not None and params.pretrained_emb_path[0] is not None: for i, lang in enumerate(self.embeddings.lang_dict): if params.pretrained_emb_path[i] is not None: vocab = datas[i].vocab assert (lang == vocab.lang) self.embeddings.embeddings[i].init_emb( self.embeddings.embeddings[i].embeddings, params.pretrained_emb_path[i], vocab) self.use_cuda = params.cuda if self.use_cuda: self.cuda()
def run(): """ Prepares and runs the whole system. """ args = parse_args() logger.info('Args are: {}'.format(args)) env = Env(args) model = env.model datasets = env.datasets worker = Trainer(args, model=model, datasets=datasets) \ if not args.is_infer else \ Inferer(args, model=model, datasets=datasets) worker.start()
def __init__(self, params, data_x, data_y): super(BVA, self).__init__() # encoder self.encoder_x = Encoder(params, data_x.vocab) self.encoder_y = Encoder(params, data_y.vocab) # inferer self.inferer = Inferer(params) # number of samples from z self.sample_n = params.sample_n self.ls_type = params.ls_type # decoder self.decoder = Decoder(params, data_x, data_y) self.use_cuda = params.cuda if self.use_cuda: self.cuda()
def __init__(self, params, data_list, classifier_config, model_dict=None): super(CLDCModel, self).__init__() # embedding layer self.embeddings = XlingEmbeddingLayer(params, data_list) # encoder self.encoder = Encoder(params) # inferer self.inferer = Inferer(params, params.inf_in_dim) # load pretrained model if model_dict is not None: XlingVA.init_model(self, model_dict) # CLDC classifier self.cldc_classifier = CLDCClassifier(params, classifier_config) self.use_cuda = params.cuda if self.use_cuda: self.cuda()
# import lib FACE_EXPRESSION_SRC_ROOT = "/Vol0/user/k.iskakov/dev/face_expression" sys.path.append(FACE_EXPRESSION_SRC_ROOT) from inferer import Inferer # setup device and checkpoint device = 'cuda:0' config_path = "/Vol1/dbstore/datasets/k.iskakov/share/face_expression/gold_checkpoints/siamese+mediapipe_normalization+use_beta-false+checkpoint_000018/config.yaml" checkpoint_path = "/Vol1/dbstore/datasets/k.iskakov/share/face_expression/gold_checkpoints/siamese+mediapipe_normalization+use_beta-false+checkpoint_000018/checkpoint_000018.pth" # device = 'cpu' device = 'cuda:0' inferer = Inferer(config_path, checkpoint_path, K_rgb, T_depth_to_rgb, device=device) count = 0 times = [] for fid in tqdm(frame_ids): print() if fid not in joints_poses_dict: continue joints_poses = joints_poses_dict[fid] # load rgb image img_path = root_folder_rgb + '/' + pid_lbl + '/' + dev_lbl + '/color_undistorted/' + str( fid).zfill(6) + '.jpg'
generator = PCLGen((perspective.DST_HEIGHT, perspective.DST_WIDTH), 50) if __name__ == "__main__": import signal import sys last = False lastPCL = None rospy.init_node("freespace_stopper") pcl_pub = rospy.Publisher("/seg/pcl", PointCloud, queue_size=10) scan_sub = rospy.Subscriber("/scan", LaserScan, callback1) forward_pub = rospy.Publisher("/forward", String, queue_size=10) image_pub = rospy.Publisher("seg/reg", Image, queue_size=2) bridge = CvBridge() inferer = Inferer(2502) def end(sig, frame): print "\n\nClosing TF sessions" inferer.sess.close() print "done." sys.exit(0) signal.signal(signal.SIGINT, end) cam = WebcamVideoStream(src=1).start() while True: frame = cam.read() start = current_time() frame = perspective.undistort_internal(frame) frame = frame[240:, :] frame = cv2.resize(frame, (480, 180))