Esempio n. 1
0
def train_infogan():

    with tf.Graph().as_default(), tf.device('/cpu:0'):
        # Create a variable to count the number of train() calls. This equals the
        # number of batches processed * FLAGS.num_gpus.
        # global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)

        # This initializaer is used to initialize all the weights of the network.
        # initializer = tf.truncated_normal_initializer(stddev=0.02)

        # These placeholders are used for input into the generator and discriminator, respectively.
        real_in = tf.placeholder(shape=[None, image_size, image_size, 3], dtype=tf.float32)  # Real images

        z_lat = tf.placeholder(shape=[None, z_size + categorical_list + number_continuous], dtype=tf.float32)  # Random vector

        # The below code is responsible for applying gradient descent to update
        # the GAN.
        trainerD = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5)
        trainerG = tf.train.AdamOptimizer(learning_rate=0.002, beta1=0.5)
        trainerQ = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5)

        tower_grads_D = []
        tower_grads_G = []
        tower_grads_Q = []
        Output = []

        tower_dloss = []
        tower_gloss = []
        tower_qloss = []

        for i in xrange(num_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('Tower_%d' % (i)):

                        Gz = infostyle_util.generator(z_lat[i * batch_size:(i + 1) * batch_size, :])  # Generates images from random z vectors
                        # Produces probabilities for real images
                        Dx, _, _ = infostyle_util.discriminator(real_in[i * batch_size:(i + 1) * batch_size, :])
                        # Produces probabilities for generator images
                        Dg, QgCat, QgCont = infostyle_util.discriminator(Gz, reuse=True)

                        # These functions together define the optimization objective of the GAN.
                        # This optimizes the discriminator.
                        d_loss = -tf.reduce_mean(tf.log(Dx) + tf.log(1. - Dg))
                        g_loss = -tf.reduce_mean(tf.log((Dg / (1 - Dg))))  # KL Divergence optimizer
                        # d_loss = tf.Print(d_loss, [d_loss], 'd_loss = ', summarize=-1)

                        # Combine losses for each of the categorical variables.
                        cat_losses = []
                        cat_loss = -tf.reduce_sum(z_lat[i * batch_size:(i + 1) * batch_size, 0:categorical_list] * tf.log(QgCat[0]), reduction_indices=1)
                        cat_losses.append(cat_loss)

                        # Combine losses for each of the continous variables.
                        q_cont_loss = tf.reduce_sum(0.5 * tf.square(z_lat[i * batch_size:(i + 1) * batch_size, categorical_list + z_size:] - QgCont), reduction_indices=1)

                        q_cont_loss = tf.reduce_mean(q_cont_loss)
                        q_cat_loss = tf.reduce_mean(cat_losses)
                        q_loss = tf.add(q_cat_loss, q_cont_loss)
                        tvars = tf.trainable_variables()

                        gen_vars = [v for v in tvars if v.name.startswith("generator/")]
                        dis_vars = [v for v in tvars if v.name.startswith("discriminator/")]

                        tf.get_variable_scope().reuse_variables()  # important

                        # Only update the weights for the discriminator network.
                        d_grads = trainerD.compute_gradients(d_loss, dis_vars)
                        # Only update the weights for the generator network.
                        g_grads = trainerG.compute_gradients(g_loss, gen_vars)
                        q_grads = trainerG.compute_gradients(q_loss, tvars)

                        # Keep track of the gradients across all towers.
                        tower_grads_D.append(d_grads)
                        tower_grads_G.append(g_grads)
                        tower_grads_Q.append(q_grads)
                        Output.append(Gz)
                        tower_dloss.append(d_loss)
                        tower_gloss.append(g_loss)
                        tower_qloss.append(q_loss)

        # Average the gradients
        grads_d = infostyle_util.average_gradients(tower_grads_D)
        grads_g = infostyle_util.average_gradients(tower_grads_G)
        grads_q = infostyle_util.average_gradients(tower_grads_Q)

        update_D = trainerD.apply_gradients(grads_d)
        update_G = trainerG.apply_gradients(grads_g)
        update_Q = trainerQ.apply_gradients(grads_q)

        Outputs = tf.concat(1, Output)

        mdloss = tf.reduce_mean(tower_dloss)
        mgloss = tf.reduce_mean(tower_gloss)
        mqloss = tf.reduce_mean(tower_qloss)

        init = tf.initialize_all_variables()
        saver = tf.train.Saver()
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        sess.run(init)
        epoch = 0
        while epoch < num_epochs:
            iter_ = infostyle_util.data_iterator(images, filenames, batch_size * num_gpus)
            for i in xrange(total_batch):
                # Generate a random z batch
                zs = np.random.uniform(-1.0, 1.0, size=[batch_size * num_gpus, z_size]).astype(np.float32)
                lcont = np.random.uniform(-1, 1, [batch_size * num_gpus, number_continuous])

                lcat = np.random.randint(0, 10, [batch_size * num_gpus, ])  # Generate random c batch
                latent_oh = np.zeros((batch_size * num_gpus, 10))
                latent_oh[np.arange(batch_size * num_gpus), lcat] = 1

                # Concatenate all c and z variables.
                zlat = np.concatenate([latent_oh, zs, lcont], 1).astype(np.float32)

                # Draw a sample batch from MNIST dataset.
                xs, _ = iter_.next()
                # xs, _ = mnist.train.next_batch(batch_size)
                # Transform it to be between -1 and 1
                xs = (np.reshape(xs, [batch_size * num_gpus, image_size, image_size, 3]) / 255.0 - 0.5) * 2.0
                # xs = np.lib.pad(xs, ((0, 0), (2, 2), (2, 2), (0, 0)), 'constant', constant_values=(-1, -1))  # Pad the images so the are 32x32

                _, dLoss = sess.run([update_D, mdloss], feed_dict={z_lat: zlat, real_in: xs})  # Update the discriminator
                # Update the generator, twice for good measure.
                _, gLoss = sess.run([update_G, mgloss], feed_dict={z_lat: zlat})
                _, qLoss = sess.run([update_Q, mqloss], feed_dict={z_lat: zlat})  # Update to optimize mutual information.

                if i % 100 == 0:
                    print "epoch: " + str(epoch) + " Gen Loss: " + str(gLoss) + " Disc Loss: " + str(dLoss) + " Q Losses: " + str(qLoss)
                    # Generate another z batch
                    z_sample = np.random.uniform(-1.0, 1.0, size=[batch_size * num_gpus, z_size]).astype(np.float32)
                    lcat_sample = np.array([e for e in range(10) for tempi in range(10 * num_gpus)])
                    latent_oh = np.zeros((batch_size * num_gpus, 10))
                    latent_oh[np.arange(batch_size * num_gpus), lcat_sample] = 1

                    aa = np.reshape(np.array([[(ee / 4.5 - tempg)] for ee in range(10 * tempg) for tempj in range(10 * tempg)]), [10 * tempg, 10 * tempg]).T
                    bb = np.reshape(aa, [batch_size * num_gpus, 1])
                    cc = np.zeros_like(bb)
                    lcont_sample = np.hstack([bb, cc])

                    # Concatenate all c and z variables.
                    zlat = np.concatenate([latent_oh, z_sample, lcont_sample], 1).astype(np.float32)
                    # Use new z to get sample images from generator.
                    samples = sess.run(Outputs, feed_dict={z_lat: zlat})
                    if not os.path.exists(sample_directory):
                        os.makedirs(sample_directory)
                    # Save sample generator images for viewing training
                    # progress.
                    infostyle_util.save_images(np.reshape(samples[0:batch_size * num_gpus], [batch_size * num_gpus, image_size, image_size, 3]), [10 * tempg, 10 * tempg], sample_directory + '/fig' + str(epoch) + str(i) + '.png')
            epoch += 1
            if not os.path.exists(model_directory):
                os.makedirs(model_directory)
            saver.save(sess, model_directory + '/model-epoch-' + str(epoch) + '.cptk')
            print "Saved Model"
Esempio n. 2
0
# Define latent variables.
# Each entry in this list defines a categorical variable of a specific size.
categorical_list = 10
number_continuous = 2  # The number of continous variables.

# This initializaer is used to initialize all the weights of the network.
initializer = tf.truncated_normal_initializer(stddev=0.02)

# These placeholders are used for input into the generator and discriminator, respectively.
real_in = tf.placeholder(shape=[None, image_size, image_size, 3],
                         dtype=tf.float32)  # Real images
z_lat = tf.placeholder(
    shape=[None, z_size + categorical_list + number_continuous],
    dtype=tf.float32)  # Random vector

Gz = infostyle_util.generator(z_lat)  # Generates images from random z vectors
# Produces probabilities for real images
Dx, _, _ = infostyle_util.discriminator(real_in)
# Produces probabilities for generator images
Dg, QgCat, QgCont = infostyle_util.discriminator(Gz, reuse=True)

# These functions together define the optimization objective of the GAN.
# This optimizes the discriminator.
d_loss = -tf.reduce_mean(tf.log(Dx) + tf.log(1. - Dg))
g_loss = -tf.reduce_mean(tf.log((Dg / (1 - Dg))))  # KL Divergence optimizer

# Combine losses for each of the categorical variables.
cat_losses = []
cat_loss = -tf.reduce_sum(z_lat[:, 0:categorical_list] * tf.log(QgCat[0]),
                          reduction_indices=1)
cat_losses.append(cat_loss)
Esempio n. 3
0
tower_grads_D = []
tower_grads_G = []
tower_grads_Q = []
Output = []

tower_dloss = []
tower_gloss = []
tower_qloss = []

for i in xrange(num_gpus):
    with tf.device('/gpu:%d' % i):
        with tf.name_scope('Tower_%d' % (i)) as scope:

            Gz = infostyle_util.generator(
                z_lat[i * batch_size:(i + 1) *
                      batch_size, :])  # Generates images from random z vectors
            # Produces probabilities for real images
            Dx, _, _ = infostyle_util.discriminator(
                real_in[i * batch_size:(i + 1) * batch_size, :])
            # Produces probabilities for generator images
            Dg, QgCat, QgCont = infostyle_util.discriminator(Gz, reuse=True)

            # These functions together define the optimization objective of the GAN.
            # This optimizes the discriminator.
            d_loss = -tf.reduce_mean(tf.log(Dx) + tf.log(1. - Dg))
            g_loss = -tf.reduce_mean(tf.log(
                (Dg / (1 - Dg))))  # KL Divergence optimizer
            # d_loss = tf.Print(d_loss, [d_loss], 'd_loss = ', summarize=-1)

            # Combine losses for each of the categorical variables.