def compute_heuristic_score(victory_cell, cell, you):
    p1_score = 0
    p2_score = 0
    p1_cell = 0
    p2_cell = 0
    empty_cell = 0
    my_victory_cell = 0
    opp_victory_cell = 0
    my_corner = 0
    new_board = Board()
    board_scores = [[120, -20, 20, 5, 5, 20, -20, 120],
                    [-20, -40, -5, -5, -5, -5, -40, -20],
                    [20, -5, 15, 3, 3, 15, -5, 20], [5, -5, 3, 3, 3, 3, -5, 5],
                    [5, -5, 3, 3, 3, 3, -5, 5], [20, -5, 15, 3, 3, 15, -5, 20],
                    [-20, -40, -5, -5, -5, -5, -40, -20],
                    [120, -20, 20, 5, 5, 20, -20, 120]]

    for i in [0, 7]:
        for j in [0, 7]:
            if cell[i][j] == you:
                my_corner += 1

    for i in victory_cell:
        c = new_board.getColumnId(i[0])
        r = new_board.getRowId(i[1])
        if cell[r][c] == you:
            my_victory_cell += 1
        elif cell[r][c] != 'E':
            opp_victory_cell += 1

    if (opp_victory_cell >= 3 and my_victory_cell == 0) or (my_victory_cell == 0 and my_corner > 0) or \
            (my_victory_cell == 4 and my_corner >= 2):
        for i in victory_cell:
            c = new_board.getColumnId(i[0])
            r = new_board.getRowId(i[1])
            if board_scores[r][c] <= 0:
                board_scores[r][c] += 20
            else:
                board_scores[r][c] += 60

    for r in range(8):
        for c in range(8):
            if cell[r][c] == you:
                p1_cell += 1
                p1_score += board_scores[r][c]
            elif cell[r][c] != 'E':
                p2_cell += 1
                p2_score += board_scores[r][c]
            else:
                empty_cell += 1
    if empty_cell > 0:
        return p1_score - p2_score
    else:
        return p1_cell - p2_cell
def minimax_max(victory_cell, cell, you, depth):
    possible_positions = []
    if type(cell) is tuple:
        new_board = Board()
        for i in range(8):
            for j in range(8):
                new_board.data[i][j] = cell[i][j]

        for (r, c) in itertools.product(list('12345678'), list('abcdefgh')):
            if new_board.isPlaceable(c + r, you):
                possible_positions.append(c + r)
        move_states = {
            move: play_move(new_board, you, new_board.getColumnId(move[0]),
                            new_board.getRowId(move[1]))
            for move in possible_positions
        }
    else:
        for (r, c) in itertools.product(list('12345678'), list('abcdefgh')):
            if cell.isPlaceable(c + r, you):
                possible_positions.append(c + r)
        move_states = {
            move: play_move(cell, you, cell.getColumnId(move[0]),
                            cell.getRowId(move[1]))
            for move in possible_positions
        }

    best_move = None
    best_value = None

    if len(possible_positions) > 0:
        if depth == 1:
            for move, state in move_states.items():
                if best_move == None or minimax_min(victory_cell, state, you,
                                                    depth + 1) > best_value:
                    best_move = move
                    best_value = minimax_min(victory_cell, state, you,
                                             depth + 1)

            return best_move

        else:
            for move, state in move_states.items():
                if best_move == None or minimax_min(victory_cell, state, you,
                                                    depth + 1) > best_value:
                    best_value = minimax_min(victory_cell, state, you,
                                             depth + 1)
            return best_value

    return compute_heuristic_score(victory_cell, cell, you)
Esempio n. 3
0
 def test_getRowId(self):
     x = Board()
     y = ['1', '2', '3', '4', '5', '6', '7', '8']
     for i in range(8):
         self.assertEqual(x.getRowId(y[i]), i)