def neuroproof_lmc(ds_train_str, ds_test_str, seg_id_train, seg_id_test,
                   local_feats_list, lifted_feats_list, mc_params):

    meta.load()

    ds_train = meta.get_dataset(ds_train_str)
    ds_test = meta.get_dataset(ds_test_str)

    ds_train.make_filters(0, mc_params.anisotropy_factor)
    ds_test.make_filters(0, mc_params.anisotropy_factor)
    ds_train.make_filters(1, mc_params.anisotropy_factor)
    ds_test.make_filters(1, mc_params.anisotropy_factor)

    mc_node, mc_edges, mc_energy, t_inf = lifted_multicut_workflow(
        ds_train,
        ds_test,
        seg_id_train,
        seg_id_test,
        local_feats_list,
        lifted_feats_list,
        mc_params,
        gamma=2.,
        warmstart=False,
        weight_z_lifted=False)

    mc_seg = ds_test.project_mc_result(seg_id_test, mc_node)

    return mc_seg
def isbi12_multicut(ds_train_str, ds_test_str,
        seg_id_train, seg_id_test,
        local_feats_list, mc_params):

    meta.load()
    ds_train = meta.get_dataset(ds_train_str)
    ds_test = meta.get_dataset(ds_test_str)

    mc_node, mc_edges, mc_energy, t_inf = multicut_workflow(
            ds_train, ds_test,
            seg_id_train, seg_id_test,
            local_feats_list, mc_params)

    if ds_test_str == "isbi2012_train":
        return eval_lazy(mc_edges, ds_test._rag(seg_id_test) )

    else:
        assert ds_test_str == "isbi2012_test"
        res_folder = "/home/consti/Work/nature_experiments/results/isbi12"
        mc_seg = ds_test.project_mc_result( seg_id_test, mc_node )

        # save segmentation result
        seg_name = "_".join( ["mcresult", str(seg_id_test), "seg"] ) + ".h5"
        seg_path = os.path.join(res_folder, seg_name)
        vigra.writeHDF5(mc_seg, seg_path, "data")

        # save binary edges
        edge_name = "_".join( ["mcresult", str(seg_id_test), "edges"] ) + ".tif"
        edge_path = os.path.join(res_folder, edge_name)
        edge_vol = edges_to_binary(ds_test._rag(seg_id_test), mc_edges)
        vigra.impex.writeVolume(edge_vol, edge_path, '', dtype = np.uint8 )
        return 0, 0
Esempio n. 3
0
def run_mc(ds_train_name, ds_test_name, mc_params, save_path):

    assert os.path.exists(os.path.split(save_path)[0]), "Please choose an existing folder to save your results"

    # if you have added multiple segmentations, you can choose on which one to run
    # experiments with the seg_id
    seg_id = 0

    # these strings encode the features that are used for the local features
    feature_list = ['raw', 'prob', 'reg']

    meta.load()
    ds_train = meta.get_dataset(ds_train_name)
    ds_test  = meta.get_dataset(ds_test_name)

    # use this for running the mc without defected slices
    mc_nodes, _, _, _ = multicut_workflow(
            ds_train, ds_test,
            seg_id, seg_id,
            feature_list, mc_params)

    # use this for running the mc with defected slices
    #mc_nodes, _, _, _ = multicut_workflow_with_defect_correction(
    #        ds_train, ds_test,
    #        seg_id, seg_id,
    #        feature_list, mc_params)

    segmentation = ds_test.project_mc_result(seg_id, mc_nodes)
    vigra.writeHDF5(segmentation, save_path, 'data', compression = 'gzip')
Esempio n. 4
0
def snemi3d_mc(ds_train_str, ds_test_str, seg_id_train, seg_id_test,
               local_feats_list, mc_params):

    meta.load()

    ds_train = meta.get_dataset(ds_train_str)
    ds_test = meta.get_dataset(ds_test_str)

    mc_node, mc_edges, mc_energy, t_inf = multicut_workflow(
        ds_train, ds_test, seg_id_train, seg_id_test, local_feats_list,
        mc_params)

    mc_seg = ds_test.project_mc_result(seg_id_test, mc_node)

    print mc_energy, t_inf

    return mc_seg
def snemi3d_lmc(ds_train_str, ds_test_str, seg_id_train, seg_id_test,
                local_feats_list, lifted_feats_list, mc_params):

    meta.load()

    ds_train = meta.get_dataset(ds_train_str)
    ds_test = meta.get_dataset(ds_test_str)
    ds_train.make_filters(0, mc_params.anisotropy_factor)
    ds_test.make_filters(0, mc_params.anisotropy_factor)
    ds_train.make_filters(1, mc_params.anisotropy_factor)
    ds_test.make_filters(1, mc_params.anisotropy_factor)
    mc_node, mc_edges, mc_energy, t_inf = lifted_multicut_workflow(
        ds_train, ds_test, seg_id_train, seg_id_test, local_feats_list,
        lifted_feats_list, mc_params)

    mc_seg = ds_test.project_mc_result(seg_id_test, mc_node)

    return mc_seg
def neuroproof_mc(ds_train_str, ds_test_str,
        seg_id_train, seg_id_test,
        local_feats_list, mc_params):

    meta.load()

    ds_train = meta.get_dataset(ds_train_str)
    ds_test = meta.get_dataset(ds_test_str)

    mc_node, mc_edges, mc_energy, t_inf = multicut_workflow(
            ds_train, ds_test,
            seg_id_train, seg_id_test,
            local_feats_list, mc_params)

    print np.unique(mc_node).shape

    mc_seg = ds_test.project_mc_result(seg_id_test, mc_node)

    return mc_seg
def run_lmc(ds_train_name, ds_test_name, mc_params, save_path):

    assert os.path.exists(os.path.split(save_path)[0]), "Please choose an existing folder to save your results"

    # if you have added multiple segmentations, you can choose on which one to run
    # experiments with the seg_id
    seg_id = 0

    # these strings encode the features that are used for the local features
    feature_list = ['raw', 'prob', 'reg']

    # these strings encode the features that will be used for the lifted edges
    feature_list_lifted = ['cluster', 'reg']

    # this factor determines the weighting of lifted vs. local edge costs
    gamma = 2.

    meta.load()
    ds_train = meta.get_dataset(ds_train_name)
    ds_test  = meta.get_dataset(ds_test_name)

    # need to make filters for the trainset beforehand
    ds_train.make_filters(0, mc_params.anisotropy_factor)
    ds_train.make_filters(1, mc_params.anisotropy_factor)

    # use this for running the mc without defected slices
    mc_nodes, _, _, _ = lifted_multicut_workflow(
            ds_train, ds_test,
            seg_id, seg_id,
            feature_list, feature_list_lifted,
            mc_params, gamma = gamma)

    # use this for running the mc with defected slices
    #mc_nodes, _, _, _ = lifted_multicut_workflow_with_defect_correction(
    #        ds_train, ds_test,
    #        seg_id, seg_id,
    #        feature_list, feature_list_lifted,
    #        mc_params, gamma = gamma)

    segmentation = ds_test.project_mc_result(seg_id, mc_nodes)
    vigra.writeHDF5(segmentation, save_path, 'data', compression = 'gzip')
    # parameters for the Multicut
    mc_params = ExperimentSettings()
    mc_params.set_rfcache(os.path.join(meta.meta_folder, "rf_cache"))
    mc_params.set_nthreads(30)

    mc_params.set_anisotropy(1.)
    mc_params.set_use2d(False)
    mc_params.set_ignore_mask(False)

    mc_params.set_fuzzy_learning(True)
    mc_params.set_negative_threshold(0.4)
    mc_params.set_positive_threshold(0.6)

    mc_params.set_ntrees(750)
    #mc_params.set_weighting_scheme("all")

    mc_params.set_solver("opengm_exact")
    mc_params.set_verbose(True)

    local_feats_list = ("raw", "prob", "reg", "topo")
    seg_id = 0

    meta.load()

    mc_seg = neuroproof_mc("neuroproof_train", "neuroproof_test",
            seg_id, seg_id,
            local_feats_list, mc_params)

    vigra.writeHDF5(mc_seg, "/home/constantin/Work/home_hdd/results/nature_results/rebuttal/neuroproof/res_mc.h5", "data", compression = 'gzip')
def regfeats():
    meta.load()
    ds = meta.get_dataset("snemi3d_train")