dp_split = dataset_params.get_split_params(p['datasets_path'], p['dataset'], p['dataset_split'], p['dataset_split_type']) scene_ids = dp_split['scene_ids'] dists = [] azimuths = [] elevs = [] visib_fracts = [] ims_count = 0 for scene_id in scene_ids: misc.log('Processing - dataset: {} ({}, {}), scene: {}'.format( p['dataset'], p['dataset_split'], p['dataset_split_type'], scene_id)) # Load GT poses. scene_gt = inout.load_scene_gt( dp_split['scene_gt_tpath'].format(scene_id=scene_id)) # Load info about the GT poses. scene_gt_info = inout.load_json( dp_split['scene_gt_info_tpath'].format(scene_id=scene_id), keys_to_int=True) ims_count += len(scene_gt) for im_id in scene_gt.keys(): for gt_id, im_gt in enumerate(scene_gt[im_id]): # Object distance. dist = np.linalg.norm(im_gt['cam_t_m2c']) dists.append(dist)
# Load dataset parameters. dp_split = dataset_params.get_split_params(p['datasets_path'], p['dataset'], p['dataset_split'], p['dataset_split_type']) model_type = None if p['dataset'] == 'tless': model_type = 'cad' dp_model = dataset_params.get_model_params(p['datasets_path'], p['dataset'], model_type) scene_ids = dataset_params.get_present_scene_ids(dp_split) for scene_id in scene_ids: # Load scene GT. scene_gt_path = dp_split['scene_gt_tpath'].format(scene_id=scene_id) scene_gt = inout.load_scene_gt(scene_gt_path) # Load scene camera. scene_camera_path = dp_split['scene_camera_tpath'].format( scene_id=scene_id) scene_camera = inout.load_scene_camera(scene_camera_path) # Create folders for the output masks (if they do not exist yet). mask_dir_path = os.path.dirname(dp_split['mask_tpath'].format( scene_id=scene_id, im_id=0, gt_id=0)) misc.ensure_dir(mask_dir_path) mask_visib_dir_path = os.path.dirname(dp_split['mask_visib_tpath'].format( scene_id=scene_id, im_id=0, gt_id=0)) misc.ensure_dir(mask_visib_dir_path)