TRAIN_STEPS = 500 BATCH_SIZE = 50 MNIST = False # For MINST if MNIST: import input_data_minst mnist = input_data_minst.read_data_sets('MNIST_data', one_hot=True) train_images, train_labels = mnist.train.images, mnist.train.labels test_images, test_labels = mnist.test.images, mnist.test.labels else: print "Loading data" train_images, train_labels = input_data.load_train_data() test_images, test_labels = input_data.load_test_data() FLAT_IMG_SIZE = train_images[0].shape[0] NUM_CLASSES = train_labels.shape[1] print "Data loaded" import numpy as np import tensorflow as tf def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): l1a = tf.nn.relu(tf.nn.conv2d(X, w, [1, 1, 1, 1], 'SAME'))
from __future__ import print_function import os import re import sys import tarfile from six.moves import urllib import tensorflow as tf import numpy as np import input_data tf.set_random_seed(777) # reproducibility NUM_CLASSES = 10 train_x, _, train_y = input_data.load_training_data() test_x, _, test_y = input_data.load_test_data() # hyper parameters learning_rate = 0.0001 training_epochs = 10 batch_size = 100 TOWER_NAME = 'tower' def next_batch(i, batch_size): batch_num = int(100 / batch_size) if (i > batch_num - 1): while (i > batch_num): i -= batch_num if (i < 0): i = 0
# Need to extend labels to match extra images labels_extended = [] for theta in [20,45,90]: for freq in [.8]: print("Running Gabor",theta,freq) imgs.extend( map(lambda x: apply_filter(x,freq,theta), image_paths) ) labels_extended.extend( labels ) return imgs,labels_extended #Loading data from input_data script train_images,train_labels = input_data.load_train_data(apply_filters) test_images,test_labels = input_data.load_test_data(apply_filters) #Train SVM classifier = svm.SVC(C=.01) classifier.fit(train_images, train_labels) train_score = classifier.score(train_images, train_labels) train_xval_score = cross_validation.cross_val_score(classifier,train_images,train_labels,cv=10,scoring='accuracy') test_score = classifier.score(test_images, test_labels) print("Short Gabors 20-45-90,.8") print("Train score:",train_score) print("Train xval score:",train_xval_score) print("Test score",test_score)
import tensorflow as tf import numpy as np import input_data tf.set_random_seed(777) # reproducibility is_convert = False train_x, _, train_y = input_data.load_training_data(is_convert) test_x, _, test_y = input_data.load_test_data(is_convert) is_convert = True train_convert_x, _, train_convert_y = input_data.load_training_data(is_convert) # hyper parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 def next_batch(i, batch_size): batch_num = int(50000 / batch_size) if (i > batch_num - 1): while (i > batch_num): i -= batch_num if (i < 0): i = 0 batch_x = train_x[i * batch_size:(i + 1) * batch_size] batch_y = train_y[i * batch_size:(i + 1) * batch_size] return batch_x, batch_y def next_converted_batch(i, batch_size): batch_num = int(50000 / batch_size) if (i > batch_num - 1):