Esempio n. 1
0
 def _import_project_parameters(self, input_file):
     import input_manager
     self.input_manager = input_manager.InputManager(input_file)
     return self.input_manager.GetProjectParameters()
Esempio n. 2
0


import tensorflow as tf
import numpy as np

import input_manager as input_manager
import cnnmodel as model


model_dir = "../model_output/wganset"
tb_dir = "../model_output/wganset/tensorboard"
total_steps =200000
check_interval = 100
batch_size = 64 
datam = input_manager.InputManager("../data/wgan_set.pb2" , batch_size, 1  )

cnn = model.cnn_model( batch_size )

iterator = datam.iterator()

input_tensors = iterator.get_next()

global_step = tf.get_variable(
        name="global_step" ,
        shape = []  ,
        dtype = tf.int64 ,
        initializer = tf.zeros_initializer() ,
        trainable = False ,
        collections = [ tf.GraphKeys.GLOBAL_VARIABLES , tf.GraphKeys.GLOBAL_STEP]
)
Esempio n. 3
0
import numpy as np
import model as model

import input_manager

z_dim = 100
mb_size = 32  # batch_size
total_steps = 10000

model_dir = "../model_output/ships"
tb_dir = "../model_output/ships/tensorboard"
CHECK_INTERVAL = 100
repeat = 1

tf.reset_default_graph()
datam = input_manager.InputManager("../data/tf_ships_norm.pb2", mb_size,
                                   repeat * mb_size)
gan = model.GAN(1, 1, 1, 1)

iterator = datam.iterator()

input_test = iterator.get_next()

#global step
global_step = tf.get_variable(
    name="global_step",
    shape=[],
    dtype=tf.int64,
    initializer=tf.zeros_initializer(),
    trainable=False,
    collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP])