def _import_project_parameters(self, input_file): import input_manager self.input_manager = input_manager.InputManager(input_file) return self.input_manager.GetProjectParameters()
import tensorflow as tf import numpy as np import input_manager as input_manager import cnnmodel as model model_dir = "../model_output/wganset" tb_dir = "../model_output/wganset/tensorboard" total_steps =200000 check_interval = 100 batch_size = 64 datam = input_manager.InputManager("../data/wgan_set.pb2" , batch_size, 1 ) cnn = model.cnn_model( batch_size ) iterator = datam.iterator() input_tensors = iterator.get_next() global_step = tf.get_variable( name="global_step" , shape = [] , dtype = tf.int64 , initializer = tf.zeros_initializer() , trainable = False , collections = [ tf.GraphKeys.GLOBAL_VARIABLES , tf.GraphKeys.GLOBAL_STEP] )
import numpy as np import model as model import input_manager z_dim = 100 mb_size = 32 # batch_size total_steps = 10000 model_dir = "../model_output/ships" tb_dir = "../model_output/ships/tensorboard" CHECK_INTERVAL = 100 repeat = 1 tf.reset_default_graph() datam = input_manager.InputManager("../data/tf_ships_norm.pb2", mb_size, repeat * mb_size) gan = model.GAN(1, 1, 1, 1) iterator = datam.iterator() input_test = iterator.get_next() #global step global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP])