input_layer_outputs = input_neuron.input_rates_sparse(rat_data[i*batch_size:((i+1)*batch_size), :]) b = datetime.datetime.now().replace(microsecond=0) # io.mmwrite(INPUT_LAYER_OUTPUTS, input_layer_outputs) #write sparse matrix to a file in COO format print 'number of nnz from input layer ' + str(input_layer_outputs.nnz) print 'input processed in ' + str(b-a) a = datetime.datetime.now().replace(microsecond=0) output_layer.process_all_inputs(input_layer_outputs) b = datetime.datetime.now().replace(microsecond=0) print 'output processed in ' + str(b-a) output_layer.save_data_to_disk() for i in range(100): weights = input_neuron.reshape_vec_to_grid(output_layer.weights[i, :]) plt.matshow(weights) plt.colorbar() plt.title('Weights of neuron ' + str(i)) plt.savefig('results/' + SUB_DIR + '/neuron_w_' + str(i) +'.png', format="png") plt.close() plt.matshow(autocorrelation.autocorrelation_normalized(weights)) plt.colorbar() plt.title('Autocorr. of neuron ' + str(i)) plt.savefig('results/' + SUB_DIR + '/neuron_a_' + str(i) +'.png', format="png") plt.close() # plt.plot(output_layer.output_layer_outputs)
import numpy as np import autocorrelation import matplotlib.pyplot as plt import input_neuron SUB_DIR = './results/9M' FILE = 'weights.npz' f = np.load(SUB_DIR + '/' + FILE) network_size = (100, 400) arr = f['arr_0'] (no_rows, no_cols) = np.shape(arr) last_weights = np.reshape(arr[no_rows - 1, :], (network_size[0], 400), order='F') for i in range(network_size[0]): weights = input_neuron.reshape_vec_to_grid(last_weights[i, :]) plt.matshow(weights) plt.colorbar() plt.title('Weights of neuron ' + str(i)) plt.savefig(SUB_DIR + '/neuron_w_' + str(i) + '.png', format="png") plt.close() plt.matshow(autocorrelation.autocorrelation_normalized(weights)) plt.colorbar() plt.title('Autocorr. of neuron ' + str(i)) plt.savefig(SUB_DIR + '/neuron_a_' + str(i) + '.png', format="png") plt.close()
a = datetime.datetime.now().replace(microsecond=0) input_layer_outputs = input_neuron.input_rates_sparse(rat_data) b = datetime.datetime.now().replace(microsecond=0) io.mmwrite(INPUT_LAYER_OUTPUTS, input_layer_outputs) #write sparse matrix to a file in COO format print 'number of nnz from input layer ' + str(input_layer_outputs.nnz) print 'input processed in ' + str(b - a) a = datetime.datetime.now().replace(microsecond=0) output_layer = fast_output_layer.FastOutputLayer(input_layer_outputs) output_layer.process_all_inputs() b = datetime.datetime.now().replace(microsecond=0) print 'output processed in ' + str(b - a) for i in range(100): weights = input_neuron.reshape_vec_to_grid(output_layer.weights[i, :]) plt.matshow(weights) plt.colorbar() plt.title('Weights of neuron ' + str(i)) plt.savefig('results/' + SUB_DIR + '/neuron_w_' + str(i) + '.png', format="png") plt.close() plt.matshow(autocorrelation.autocorrelation(weights)) plt.colorbar() plt.title('Autocorr. of neuron ' + str(i)) plt.savefig('results/' + SUB_DIR + '/neuron_a_' + str(i) + '.png', format="png") plt.close() # plt.plot(output_layer.output_layer_outputs)
import numpy as np import autocorrelation import matplotlib.pyplot as plt import input_neuron SUB_DIR = './results/9M' FILE = 'weights.npz' f = np.load(SUB_DIR + '/' + FILE) network_size = (100, 400) arr = f['arr_0'] (no_rows, no_cols) = np.shape(arr) last_weights = np.reshape(arr[no_rows-1,:], (network_size[0], 400), order='F') for i in range(network_size[0]): weights = input_neuron.reshape_vec_to_grid(last_weights[i,:]) plt.matshow(weights) plt.colorbar() plt.title('Weights of neuron ' + str(i)) plt.savefig(SUB_DIR + '/neuron_w_' + str(i) +'.png', format="png") plt.close() plt.matshow(autocorrelation.autocorrelation_normalized(weights)) plt.colorbar() plt.title('Autocorr. of neuron ' + str(i)) plt.savefig(SUB_DIR + '/neuron_a_' + str(i) +'.png', format="png") plt.close()